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ABSTRACT

This technical report presents our submission to Task 3 of the
DCASE 2025 Challenge: Stereo Sound Event Localization and De-
tection (SELD) in Regular Video Content. We address the audio-
only task in this report and introduce several key contributions.
First, we design perceptually-motivated input features that improve
event detection, sound source localization, and distance estima-
tion. Second, we adapt augmentation strategies specifically for
the intricacies of stereo audio, including channel swapping and
time-frequency masking. We also incorporate the recently pro-
posed FilterAugment technique that has yet to be explored for
SELD work. Lastly, we apply a distance normalization approach
during training to stabilize regression targets. Experiments on
the stereo STARSS23 dataset demonstrate consistent performance
gains across all SELD metrics. Code to replicate our work is avail-
able in this repository1

Index Terms— Sound Event Localization and Detection,
Sound Distance Estimation, Sound Source Localization, Sound
Event Detection

1. INTRODUCTION

Sound Event Localization and Detection (SELD) is a form of
machine-listening that enables systems to not only understand what
sounds are happening, but also where they come from [1]. This
form of spatial intelligence can be extended into three-dimensions
by integrating Sound Distance Estimation (SDE), cumulating in 3D
SELD. The transition of the Detection and Classification of Acous-
tic Scenes and Events (DCASE) challenge tasks from SELD to
3D SELD also signifies the growing interest in distance-aware sys-
tems [2].

Most existing SELD and 3D SELD systems use small micro-
phone arrays, often configured in either the First Order Ambison-
ics (FOA) or Multi-channel Microphone Array (MIC) formats. In
2025, the DCASE Challenge Task 3 shifts the focus onto stereo-
based 3D SELD, pivoting to a form of spatial awareness meant for
consumer electronics. This reflects a greater trend towards more
consumer-friendly environmental intelligence, such as for wear-
ables [3] and online inference systems [4].

Compared to traditional FOA or MIC audio formats, stereo-
based SELD has not yet been extensively explored [5]. In this pa-
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per, we outline our proposed system and general methodology for
stereo-based 3D SELD. Our methods, including stereo-aware aug-
mentation, perceptually-inspired features, and distance normaliza-
tion, can apply to generic stereo 3D SELD pipelines to significantly
improve performance.

2. INPUT FEATURES

Let xL[n] and xR[n] denote the left and right stereo input channels,
respectively, with n being the discrete-time index. The Short-Time
Fourier Transform (STFT) of the c-th channel at time frame t and
frequency bin f is denoted as Xc(t, f), for c ∈ {L,R}.

2.1. Mid-Side Conversion

Mid-Side (MS) conversion explicitly decomposes the stereo signal
into Mid (M) and Side (S) components. This decomposition has
been explored for acoustic analysis tasks using stereo audio, such
as Acoustic Scene Classification [6]. The conversion process is per-
formed in the time-domain as follows,

m[n] =
xL[n] + xR[n]

2
, s[n] =

xL[n]− xR[n]

2
, (1)

where m[n] and s[n] denote the discrete-time mid and side signals,
respectively. Here, m[n] represents the average pressure and s[n]
captures the horizontal pressure differential. The STFTs of m[n]
and s[n] are therefore M(t, f) and S(t, f), respectively.

Similar to the Intensity Vector (IV) used in FOA-based SELD
work [7], we derive a MS-based intensity feature for stereo audio.
For each time-frequency (TF) bin, the real portion of the MS cross-
spectrum is computed as follows,

Ix(t, f) = ℜ
{
M(t, f) S∗(t, f)

}
, (2)

before being normalized by the total MS power:

Ĩx(t, f) =
Ix(t, f)

|M(t, f)|2 + |S(t, f)|2 + ε
. (3)

where ε is a small constant to prevent division by zero. Finally,
Ĩx(t, f) is typically projected onto a K-band Mel scale using the
Mel filter bank matrix Wmel:

IV(t, f) = Ĩx(t, f) ·Wmel(f, k). (4)
This IV feature captures stereo intensity differences in a similar

fashion to spatial features for FOA audio [8], providing important
directionality cues to our stereo-based SELD system.

https://github.com/itsjunwei/NTU_SNTL_Task3


Detection and Classification of Acoustic Scenes and Events 2025 Challenge

2.2. Spatial Coherence

Spatial coherence measures the similarity between channels as a
function of frequency. This property has been investigated in many
SDE frameworks due to its strong relationship with sound source
distance [9]. In this work, we use the magnitude-squared coherence
(MSC) between the LR channels.

Firstly, we define the cross-power spectral density between the
two stereo channels as

ΦL,R(t, f) = E
[
XL(t, f)X

∗
R(t, f)

]
. (5)

In practice, we estimate ΦL,R(t, f) using time-recursive aver-
aging [10]:

Φ̂L,R(t, f) = λ Φ̂L,R(t− 1, f)+ (1−λ)XL(t, f)X
∗
R(t, f), (6)

where λ ∈ [0, 1] is a smoothing coefficient, set as 0.8 in this
work [11]. The MSC γ̂(t, f) is subsequently calculated as

γ̂(t, f) =
|Φ̂L,R(t, f)|2

Φ̂L,L(t, f) Φ̂R,R(t, f) + ε
, (7)

where 0 ≤ γ̂(t, f) ≤ 1. Here, high MSC values typically signal
direct, coherent sources (near/focused events), while lower values
suggest diffuse or distant sources. Similarly, we project the MSC
onto the same K-band Mel scale using Wmel:

MSC(t, f) = γ̂(t, f) ·Wmel(f, k). (8)

3. DATA AUGMENTATION

We employ both waveform-level and spectrogram-level augmen-
tation methods to generate meaningful variations in stereo spatial
cues, thereby improving model robustness.

3.1. Waveform-level

Audio channel swapping (ACS) methods have been developed for
both the FOA and MIC audio formats [12, 13]. ACS-based methods
are extremely effective for the two-dimensional SELD task due to
them being able to significantly increase the number of directional
events, while preserving the natural reverberation conditions of the
recording environments [14].

In the case of stereo audio, the ACS method becomes a simple
swapping of the left and right channels. Accordingly, the azimuth
labels are also inverted about the frontal axis. This can essentially
double the amount of directional sound events available.

3.2. Spectrogram-level

In this work, we explore three different spectrogram-level data aug-
mentation methods that are applied to the input features on-the-fly
during training.

FilterAugment applies band-specific gains across the input
spectrograms, simulating realistic distortions across frequency
bands. Originally developed for Sound Event Detection [15], this
method introduces variability in spectral coloration. Therefore, this
can prevent models from relying on frequency-specific artifacts,
making it attractive and applicable for SELD.

Frequency Shifting perturbs the input spectrograms by shifting
frequencies within a controlled range, simulating pitch variation in

Figure 1: Block diagram of the ResNet-biGRU CRNN used in our
DCASE 2025 submission.

the frequency domain. This has shown to improve generalization by
encouraging the model to learn frequency-invariant representations
of spatial cues [16, 17].

Inter-Channel-Aware Time-Frequency Masking (ITFM) is
our proposed adaptation of TF masking (TFM) for stereo au-
dio. Traditional TFM methods, such as SpecAugment [18] or
Cutout [19], typically apply independent or identical masks to
each of the spectral channels. This risks distorting or erasing
inter-channel differences, which are critical for robust localization
and distance estimation in stereo-based tasks. Our ITFM method
pre-computes and reapplies inter-channel differences post-masking.
Therefore, this helps to preserve inter-channel differences, main-
taining spatial information essential for robust 3D SELD.

4. NETWORK ARCHITECTURE

For this year’s challenge, we employed a relatively lightweight
convolutional recurrent neural network (CRNN) built on a ResNet
backbone followed by bi-directional gated recurrent units (bi-
GRUs). The architecture follows similarly to our previous DCASE
submission in 2024 [20]. For the output, we use the multi-
ACCDDOA output format proposed by Shimada et al. [21] and ex-
tended for distance estimation by Krause et al. [22].

Figure 1 showcases the CRNN system that we use for our sub-
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missions. The Mean Squared Error (MSE) is used as the loss func-
tion. Notably, we opt not to use Conformer modules [13, 14] to
reduce the substantial computational and environmental costs as-
sociated with training such large, complex models. Quantitatively,
our full systems only uses around 4 million parameters, and requires
1.89G multiply-accumulate operations (MACs) per forward pass.

5. DISTANCE NORMALIZATION

The distance values in the STARSS23 dataset can range from
[0.04, 7.64] in meters. If we were to directly regress these values
in ACCDOA-based output format variants, the MSE loss function
can very easily be biased towards further or more distant sound
events [22]. Therefore, to mitigate this problem, we apply the dis-
tance normalization method that was first proposed in our previous
work on 3D SELD [20].

This distance normalization procedure scales the distribution of
distances, d, to a uniform range of [−1, 1] in two steps:

d′ =
d− d̄

σd
, dnorm =

d′

max(d′)
, (9)

where d̄ and σd represent the mean and standard deviation of all dis-
tances, respectively. This normalization ensures that all elements in
the multi-ACCDDOA vector lies within the same scale of [−1, 1],
preventing larger distances from disproportionately affecting the
MSE loss, thereby yielding better overall 3D SELD performance.

6. EXPERIMENTAL METHOD

6.1. Dataset

The STARSS23 dataset consists of real-world, multi-room record-
ings with annotations of event activity, spatial trajectories, and dis-
tances [23]. The stereo version of STARSS23 comprises of 30,000
five-second audio recordings, with the training set containing 22.5h
of audio data. To enrich the number of real-world directional exam-
ples, we apply ACS to the STARSS23 dataset to double the amount
of real data to roughly 45h.

Manual annotation of 3D SELD data is costly, resulting in the
class distribution in the STARSS23 dataset to be severely imbal-
anced. We mitigate this challenge by first generating additional
FOA data using the SpatialScaper generator [24], before convert-
ing them into stereo audio using the provided conversion generator.
In total, a total of 30,000 additional five-second synthetic stereo au-
dio samples were generated. The combined dataset used for training
therefore spans approximately 86.7h.

For feature extraction, we use a sampling rate of 24kHz, using
a 1024-point FFT with the Hann window of length 1024 samples
and a hop length of 300 samples, resulting in 400 time frames per
audio clip. All features are mapped onto 96 Mel bands.

6.2. Training

The base feature stack consists of LR log-Mel spectrograms. We ex-
tend this by including the proposed perceptually-motivated features.
In particular, the addition of MS log-Mel spectrograms and IV gives
the MSI feature set. The subsequent addition of MSC yields the
richer MSIC feature set.

Spatial diversity during training is further enhanced by two
alternative spectrogram-level augmentation pipelines – either us-
ing the proposed stereo-based TFM method (ITFM) or frequency-

Table 1: 3D SELD performance of the SELDNet baseline system
when distance normalization is applied.

Experiment F20◦/1↑ LECD↓ RDECD↓ ESELD↓

Baseline 23.72 20.8◦ 0.347 0.409
+ DN 24.60 17.0◦ 0.287 0.379

Table 2: Performance of our submitted systems using different com-
binations of input features and data augmentation pipelines.

Setup F20◦/1↑ LECD↓ RDECD↓ ESELD↓

A MSI + ITFM 43.95 13.2◦ 0.271 0.302
B MSIC + ITFM 43.12 12.7◦ 0.259 0.300
C MSI + FAFS 45.32 13.2◦ 0.262 0.294
D MSIC + FAFS 43.44 13.2◦ 0.261 0.300

domain perturbation that combines FilterAugment and Frequency
Shifting (FAFS).

We train each of our systems for 100 epochs using the Adam
optimizer, with a peak learning rate of 1 × 10−3, weight decay of
1× 10−4, and a batch size of 64. We follow the implementation of
the baseline system and evaluate the model on the test split of the
development set of the STARSS23 dataset, saving the model with
the best validation location-dependent F-Score as our final model.
Furthermore, we further fine-tune the models for another 20 epochs
on only real audio recordings after the initial training.

7. RESULTS

We employ the same validation metrics as used in DCASE 2025
Challenge Task 3. These include the location-dependent F-score
(F20◦/1), class-dependent localization error (LECD), and class-
dependent relative distance error (RDECD). In addition, we also cal-
culate an aggregated SELD error (ESELD) to provide an overview of
the overall performance of the system as follows [25]:

ESELD = ((1− F≤20◦/1) +
LECD

180◦
+RDECD)/3. (10)

First, we demonstrate the effectiveness of using distance nor-
malization (DN). Table 1 showcases the performance of the base-
line SELDNet trained using the stereo version of the STARSS23
dataset. From the results, we can see that using DN yields con-
sistent performance improvements across all metrics. In particular,
ESELD decreases by 7.33%, showing the benefits of distance nor-
malization in improving overall 3D SELD performance.

For our submitted systems, we use a combination of improved
feature sets with different augmentation methods. Table 2 show-
cases the 3D SELD performance of our submitted systems. All
submitted systems apply DN to the ground truth labels.

Compared to the baseline system in Table 1, we can see that our
proposed approach yields significant improvements in 3D SELD
performance. We leave the optimal combination of spatial features
and augmentation pipelines for future work. We theorize also that
our methods, in combination with more complex and sophisticated
model architectures, can yield even better performance.
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8. CONCLUSION

This technical report details our proposed methods for the stereo-
based 3D SELD task. We use perceptually-motivated input features
to improve both localization and distance estimation performance.
We introduce FilterAugment for the 3D SELD task, and propose a
stereo-specific form of spectrogram masking augmentation. Over-
all, our proposed approach yields consistent and extensive improve-
ments across all 3D SELD metrics, and can be applied to generic
stereo-based 3D SELD methodologies.
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