ECHOTWIN-QA: A DUAL-TOWER BEATSBERT SYSTEM FOR DCASE 2025 TASK 5 AUDIO QUESTION ANSWERING

Technical Report

Zeyu Yin¹, Ziyang Zhou¹, Yiqiang Cai¹, Shengchen Li¹, Xi Shao²

¹ Xi'an Jiaotong-Liverpool University, School of Advanced Technology, Suzhou, China, {zeyu.yin22, ziyang.zhou22, yiqiang.cai21}@student.xjtlu.edu.cn, shengchen.li@xjtlu.edu.cn ² Nanjing University of Posts and Telecommunications, College of Telecommunications and Information Engineering, Nanjing, China, shaoxi@njupt.edu.cn

ABSTRACT

Task 5 of the DCASE 2025 Challenge frames Audio Question Answering (AQA) as a multi-choice test of acoustic reasoning across marine bio-acoustics, temporal soundscapes and everyday recordings. We present a light-weight dual-tower system that couples a BEATs-Base audio encoder with a BERT-Base text encoder; a twolayer MLP, amounting to ~132M trainable parameters, maps the concatenated embeddings to answer logits. On the official development set our best submission achieves 54.46 % accuracy, surpassing the strongest baseline (Gemini-2.0-Flash, 52.5%)¹.

Index Terms— Audio Question Answering, Acoustic Reasoning, DCASE 2025

1. INTRODUCTION

Audio Question Answering (AQA) has recently emerged as a unified benchmark for agents that must both perceive and reason over real-world soundscapes [1]. The DCASE 2025 Task 5 Audio Question Answering (AQA) formalises this by requiring systems to answer open–domain questions on marine-mammal calls, temporal soundscapes, and complex real-world recordings. [2].

AQA is conceptually close to Automated Audio Captioning (AAC), which translates an audio clip into free-text descriptions. The 2024 DCASE AAC task demonstrated that pairing strong audio encoders with large language models (LLMs) can achieve state-of-the-art FENSE scores [3]. These trends are highly relevant to AQA because they show how audio perception and language reasoning can be combined.

End-to-end audio-LLMs excel at zero-shot generalisation but require billions of trainable parameters. In contrast, contrastive models such as CLAP align audio and text in a shared space with far fewer weights [4]. We therefore adopt a dual-tower design in our submission: a BEATs audio encoder [5] and a BERT-base text encoder [6]. Our dual-tower architecture resembles the two-branch baseline introduced for the Clotho-AQA dataset, where independent audio and question encoders are concatenated before downstream classification [7].

2. METHOD

2.1. Overview

Our system follows a dual-tower paradigm: a frozen audio encoder and a frozen text encoder transform their respective modalities into fixed-dimensional embeddings, which are concatenated and passed to a lightweight multilayer perceptron (MLP) classifier. All learnable parameters therefore reside only in the MLP and (optionally) the N highest audio layers we unfreeze for domain adaptation. Figure 1 in the final paper will depict this pipeline.

2.2. Data Preparation

Corpus structure Each JSON file supplies a question, a list of choices, an answer letter, the audio_url, and a question_type tag. **Waveform loading** Clips are resampled to 16 kHz, converted to mono, peak-normalised, clipped to 10 s (160 000 samples) and zero-padded if shorter. Files with < 25 ms of content are discarded.

$$\begin{aligned} x_{\text{pad}}[n] \ = \ \begin{cases} \tilde{x}[n], & 0 \le n < L, \\ \varepsilon, & L \le n < N, \end{cases} \qquad L = \text{len}(\tilde{x}), \ N = 160\,000. \end{aligned}$$

Data Augmentation

• Time shift random ±1 s circular roll with zero padding.

$$x_{\text{shift}}[n] = x[(n-s) \mod N].$$

• **SpecAug** 1 × frequency mask (F=20 bins) + 1 × time mask (T=80 frames) on a magnitude spectrogram (400-pt FFT, 25 ms hop) [8]. A 16-step Griffin–Lim vocoder reconstructs the waveform [9].

$$S_{\text{mask}}(k,t) = \begin{cases} 0, & f_0 \le k < f_0 + F, \\ S(k,t), & \text{otherwise.} \end{cases}$$
$$S_{\text{mask}}(k,t) = \begin{cases} 0, & t_0 \le t < t_0 + T, \end{cases}$$

$$S(k,t)$$
, otherwise.

• **Random gain** uniform [-6 dB, +6 dB] (p = 0.5).

¹https://github.com/HuffmanJoey/dcase25_t5_ EchoTwin-QA

Figure 1: Dual-tower architecture: a frozen BEATs audio encoder and a frozen BERT text encoder produce modality-specific embeddings, which are concatenated and fed to a lightweight MLP classifier. Only the MLP (and optionally the top L BEATs layers) are fine-tuned.

• Additive noise Gaussian noise mixed at a random 10–30 dB SNR (p = 0.3).

$$y[n] = x[n] + \sigma \eta[n], \tag{1}$$

$$\sigma = \sqrt{\frac{P_x}{10^{\text{SNR/10}}}},\tag{2}$$

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} x[n]^2, \qquad \eta[n] \sim \mathcal{N}(0,1).$$
(3)

Tokenizer The question string is concatenated with all answer choices, lower-cased, and tokenised by **BERT-Base-Uncased**; sequences are padded or truncated to 128 sub-words. (For padding we reuse the [PAD] token so that attention masks remain binary.)

2.3. Model Architecture

Our system is a *dual-tower* network (Fig. 1). Given an audio clip $x \in \mathbb{R}^N$ and a token sequence $\mathbf{q} = (q_1, \ldots, q_T)$, the forward path is

$$\mathbf{a} = f_{\text{BEATs}}(x) \xrightarrow{\text{mean-pool}} \bar{\mathbf{a}} \in R^{d_a}, \tag{4}$$

$$\mathbf{t} = f_{\text{BERT}}(\mathbf{q}) = \mathbf{h}_{[\text{CLS}]} \in R^{d_t}, \tag{5}$$

$$\mathbf{z} = \begin{bmatrix} \bar{\mathbf{a}} \parallel \mathbf{t} \end{bmatrix} \in R^{d_a + d_t},\tag{6}$$

$$\hat{\mathbf{y}} = \mathrm{MLP}(\mathbf{z}) \xrightarrow{\mathrm{softmax}} \mathbf{p} \in [0, 1]^C,$$
 (7)

where C is the number of answer choices. Only the parameters of the two-layer MLP (and optionally the top L layers of BEATs) are trainable; both encoders are otherwise frozen.

• Fusion & classification. We concatenate the two embeddings and feed them to a two-layer multilayer perceptron

$$\mathbf{z} = \operatorname{ReLU}(\mathbf{W}_1[\mathbf{a};\mathbf{t}] + \mathbf{b}_1) \in R^{512}, \qquad \hat{\mathbf{y}} = \mathbf{W}_2 \mathbf{z} + \mathbf{b}_2 \in R^K,$$

where K is the number of answer choices. The model is trained with label-smoothed cross-entropy.

2.4. Training Strategy

We train the model using a purely supervised objective without any contrastive loss. The training configuration is as follows:

• Loss function: We use *label-smoothed cross-entropy* with $\varepsilon = 0.05$ over the multiple-choice logits:

$$\mathcal{L}_{ ext{CE}}^{ ext{smooth}} = (1 - arepsilon) \cdot \mathcal{L}_{ ext{CE}} + arepsilon \cdot \mathcal{L}_{ ext{uniform}}.$$

- **Optimiser:** *AdamW* with two learning rates:
 - 1×10^{-5} for all trainable text and fusion MLP parameters,
 - 1×10^{-6} for optionally unfrozen BEATs layers.

Weight decay is applied in our training and we experimented with $\lambda_{wd} \in \{0.01, 0.001\}$ and a no-decay run ($\lambda_{wd} = 0$).

• Scheduler: *Cosine annealing* schedule with warmup:

$$\eta_t = \eta_{\min} + \frac{1}{2}(\eta_0 - \eta_{\min}) \left(1 + \cos\left(\pi \cdot \frac{t}{T_{\max}}\right) \right).$$

- Gradient handling: Gradients are clipped to ℓ_2 norm ≤ 1.0 . Automatic mixed precision (AMP) is enabled via torch.cuda.amp.
- Data augmentation: During training we apply a *class-conditional MixUp* at the waveform level. At every optimisation step we sample $\lambda \sim \text{Beta}(\alpha, \alpha)$ with $\alpha = 0.4$ and blend two clips *only if they share the same ground-truth label*:

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j, \qquad y_i = y_j$$

• **Early stopping:** Validation accuracy is tracked at the end of each epoch. The model with the highest dev-set accuracy is saved as the final checkpoint.

2.5. Inference and Evaluation

At test time both encoders remain frozen; the system performs a single forward pass and chooses the answer with the highest softmax probability. We report:

Overall accuracy on the development sets.

Per-question-type accuracy, enabling fine-grained error analysis (audio_tagging, vocalization, counting ...).

During inference on the evaluation set, the model predicts only the choice letter (e.g., A, B, C). A post-processing script then maps this letter to its corresponding answer text and writes the full string to the final CSV file submitted to DCASE.

Table 1: Dev-set accuracy (%) and key hyper-parameters of our submissions.

ID	Unfreeze layer	Data Aug.	WD	Params (M)	Dev (%)
Sub 1	3	No	0	131.5	54.46
Sub 2	3	No	0	131.5	54.26
Sub 3	4	Yes	0.001	138.6	54.01
Sub 4		Ens.	—	-(reuse)	55.07

Table 2: Dev-set accuracy (%) by question type. Best value is **bold**.

Туре	Sub1	Sub2	Sub3	Sub4
overall	54.46	54.26	54.01	55.07
both	63.36	63.54	63.78	63.78
sound counting	29.46	30.36	33.93	33.93
sound detection	30.55	29.89	27.91	30.42
audio tagging	50.00	52.50	55.00	55.00
remember	56.92	55.38	40.00	56.92
vocalization	48.65	45.95	45.95	48.65
apply_frequency	36.67	30.00	33.33	36.67
apply_duration	38.10	38.10	28.57	38.10
understand_acoustics	78.26	69.57	82.61	82.61
species	25.00	18.75	25.00	25.00
audio detection	0.00	0.00	50.00	50.00

3. SUBMISSIONS AND RESULTS

3.1. System Variants

We submitted three single-model runs and one router–ensemble (Table 1):

- **Sub 1** best checkpoint of a run with *three* unfrozen BEATs layers and *no* data augmentation.
- Sub 2 final checkpoint of the same configuration as Sub 1, illustrating the effect of continued training.
- Sub 3 best checkpoint with *four* unfrozen BEATs layers, full waveform augmentation, and weight decay 10^{-3} .
- Sub 4 a lightweight router that sends each question_type to the model (Sub 1 or Sub 3) that performs best for that type; no additional parameters are trained.

3.2. Comparison with Baseline Systems

Table 3 contrasts our best run with the official baseline systems released for DCASE 2025 Task 5. The ensemble exceeds the strongest baseline (Gemini-2.0-Flash) by **2.57 pp** on the development set while being two orders of magnitude smaller.

Table 3: Dev-set accuracy of baseline models versus our ensemble.

System	Dev Acc. (%)	
Qwen2-Audio-7B	45.0	
AudioFlamingo 2	45.7	
Gemini-2.0-Flash	52.5	
Ours (Sub 4)	55.07	

3.3. Discussion

Layer unfreezing. Moving from three to four trainable BEATs layers (Sub 1 \rightarrow Sub 3) adds \approx 7 M parameters that adapt low-level acoustic filters. The gain is clearest on categories that depend on *fine temporal resolution* or *event boundaries: sound counting* (+4.5pp) and *audio tagging* (+5pp) in Table 2. In contrast, tasks that rely on *stable semantic alignment between audio and text*—*remember, vocalization*— lose 8–17pp, suggesting that too much feature drift in the audio tower can mis-align with the frozen BERT embeddings.

We attribute the pattern in Table 2 to three interacting factors:

Spectro-temporal focus of higher BEATs blocks. Layers 10–12 of BEATs attend to short onsets and energy envelopes that mark individual events. Unfreezing them lets the model re-shape these detectors toward the mixed marine–urban domain of DCASE, which boosts *sound counting, audio tagging* and the rare *audio detection* queries that hinge on clear event boundaries. However, the same re-tuning distorts mid-level abstractions (phonetic identity, harmonicity) that BERT relies on for semantic grounding, reducing accuracy on narrative or memory-style tasks.

Invariance introduced by SpecAug + MixUp. Frequency masking and MixUp drive the network to ignore localised spectral content and focus on *presence* rather than *exact position*. This is ideal for binary decisions such as "is there a whistle in the clip?" but detrimental when the start/end positions or fine durational structure matter (*apply_duration, remember*). Noise and gain jitter further damp amplitude cues that BERT's CLS embedding might use to align words like "first" or "louder" with specific acoustic segments.

Sample-size imbalance across types. Bio-acoustic and counting questions are the sparsest categories in the training set (< 5% of clips). Augmentation effectively enlarges these sub-corpora, allowing the four-layer model to generalise better on them even at the cost of minor degradation elsewhere. For plentiful types such as *both* and *remember*, the benefit saturates, so any drift in the representation becomes a net loss.

These factors explain why Sub1 (fewer trainable weights, no augmentation) preserves global semantic alignment, whereas Sub3 (four trainable layers, heavy augmentation) excels on event-centric, data-sparse tasks. The router-ensemble in Sub4 simply harvests whichever inductive bias is more appropriate for each question type, yielding the best overall score without additional parameters.

Waveform augmentation. The SpecAug+MixUp regime in Sub 3 injects frequency masks, time masks, gain jitter and noise. These perturbations mimic the variability of real-world sound events, helping categories that hinge on short bursts of energy (*audio detection*, which climbs from 0% to 50%). Conversely, the same distortions can blur long-context cues needed for duration or narrative questions, explaining the drop on *apply_duration* (-10pp) and the partial loss on *remember*.

Complementarity and ensemble. Because Sub1 excels at semantics-heavy and holistic queries while Sub3 excels at eventcentric ones, routing each question_type to its stronger expert (Sub4) combines the best of both worlds. The ensemble preserves Sub3's improvements on *sound counting, audio tagging,* and *understand_acoustics* while restoring Sub1's advantages on *remember, vocalization* and *apply_duration*. The net result is a further **+0.61pp** in overall accuracy,

4. SUMMARY AND FUTURE WORK

We introduced **EchoTwin-QA**, a lightweight dual-tower system that couples frozen BEATs and BERT encoders with a shallow classification head for DCASE 2025 Task 5 Audio Question Answering. A three-layer variant without augmentation already surpasses the strongest baseline by 1.96 pp on the development set, and a simple router–ensemble that combines this model with a four-layer, heavily augmented counterpart raises overall accuracy to **55.07** %.

Our next steps centre on addressing the clear domain gaps revealed by the per-type evaluation.

We will pursue an **ensemble strategy** in which small specialist encoders—one trained on bio-acoustic corpora and another on short-event sound detection—are combined with the current BEATs + BERT tower. A lightweight "router" module will analyse each (question, audio) pair and dispatch it to the most suitable expert before logit fusion, allowing us to exploit strengths that a single generic model cannot capture. We believe these directions will push our audio QA system closer to human-level acoustic reasoning in forthcoming challenges.

5. REFERENCES

- [1] "Audio question answering dcase challenge 2025 task 5," https://dcase.community/challenge2025/ task-audio-question-answering, accessed 5 May 2025.
- [2] C.-H. H. Yang, S. Ghosh, and Q. W. et al., "Multi-domain audio question answering toward acoustic content reasoning in the dcase 2025 challenge," 2025.
- [3] "Automated audio captioning dcase challenge 2024 task 6," https://dcase.community/challenge2024/ task-automated-audio-captioning-results, accessed 14 Apr 2025.
- [4] Y. Wu*, K. Chen*, T. Zhang*, Y. Hui*, T. Berg-Kirkpatrick, and S. Dubnov, "Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption augmentation," in *IEEE International Conference on Acoustics, Speech* and Signal Processing, ICASSP, 2023.
- [5] S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins, Z. Chen, W. Che, X. Yu, and F. Wei, "Beats: audio pre-training with acoustic tokenizers," in *Proceedings of the 40th International Conference on Machine Learning*, ser. ICML'23. JMLR.org, 2023.
- [6] J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: pre-training of deep bidirectional transformers for language understanding," *CoRR*, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
- [7] S. Lipping, P. Sudarsanam, K. Drossos, and T. Virtanen, "Clotho-aqa: A crowdsourced dataset for audio question answering," 2022. [Online]. Available: https://arxiv.org/abs/ 2204.09634
- [8] D. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. Cubuk, and Q. Le, "Specaugment: A simple data augmentation method for automatic speech recognition," 09 2019, pp. 2613–2617.

[9] D. Griffin and J. Lim, "Signal estimation from modified short-time fourier transform," *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 32, no. 2, pp. 236–243, 1984.