
Detection and Classification of Acoustic Scenes and Events 2025 Challenge

ECHOTWIN-QA: A DUAL-TOWER BEATSBERT SYSTEM FOR DCASE 2025 TASK 5 AUDIO
QUESTION ANSWERING

Technical Report

Zeyu Yin1, Ziyang Zhou1, Yiqiang Cai1, Shengchen Li1, Xi Shao2

1 Xi’an Jiaotong-Liverpool University, School of Advanced Technology, Suzhou, China,
{zeyu.yin22, ziyang.zhou22, yiqiang.cai21}@student.xjtlu.edu.cn, shengchen.li@xjtlu.edu.cn

2 Nanjing University of Posts and Telecommunications,
College of Telecommunications and Information Engineering, Nanjing, China,

shaoxi@njupt.edu.cn

ABSTRACT

Task 5 of the DCASE 2025 Challenge frames Audio Question An-
swering (AQA) as a multi-choice test of acoustic reasoning across
marine bio-acoustics, temporal soundscapes and everyday record-
ings. We present a light-weight dual-tower system that couples a
BEATs-Base audio encoder with a BERT-Base text encoder; a two-
layer MLP, amounting to ∼132M trainable parameters, maps the
concatenated embeddings to answer logits. On the official develop-
ment set our best submission achieves 54.46 % accuracy, surpassing
the strongest baseline (Gemini-2.0-Flash, 52.5%)1.

Index Terms— Audio Question Answering, Acoustic Reason-
ing, DCASE 2025

1. INTRODUCTION

Audio Question Answering (AQA) has recently emerged as a
unified benchmark for agents that must both perceive and reason
over real-world soundscapes [1]. The DCASE 2025 Task 5 Audio
Question Answering (AQA) formalises this by requiring systems to
answer open–domain questions on marine-mammal calls, temporal
soundscapes, and complex real-world recordings. [2].

AQA is conceptually close to Automated Audio Captioning
(AAC), which translates an audio clip into free-text descriptions.
The 2024 DCASE AAC task demonstrated that pairing strong
audio encoders with large language models (LLMs) can achieve
state-of-the-art FENSE scores [3]. These trends are highly relevant
to AQA because they show how audio perception and language
reasoning can be combined.

End-to-end audio-LLMs excel at zero-shot generalisation but
require billions of trainable parameters. In contrast, contrastive
models such as CLAP align audio and text in a shared space with
far fewer weights [4]. We therefore adopt a dual-tower design
in our submission: a BEATs audio encoder [5] and a BERT-base
text encoder [6]. Our dual-tower architecture resembles the
two-branch baseline introduced for the Clotho-AQA dataset, where
independent audio and question encoders are concatenated before
downstream classification [7].

1https://github.com/HuffmanJoey/dcase25_t5_
EchoTwin-QA

2. METHOD

2.1. Overview

Our system follows a dual-tower paradigm: a frozen audio encoder
and a frozen text encoder transform their respective modalities into
fixed-dimensional embeddings, which are concatenated and passed
to a lightweight multilayer perceptron (MLP) classifier. All learn-
able parameters therefore reside only in the MLP and (optionally)
the N highest audio layers we unfreeze for domain adaptation. Fig-
ure 1 in the final paper will depict this pipeline.

2.2. Data Preparation

Corpus structure Each JSON file supplies a question, a list of
choices, an answer letter, the audio url, and a question type tag.
Waveform loading Clips are resampled to 16 kHz, converted to
mono, peak-normalised, clipped to 10 s (160 000 samples) and
zero-padded if shorter. Files with < 25 ms of content are discarded.

xpad[n] =

{
x̃[n], 0 ≤ n < L,

ε, L ≤ n < N,
L = len(x̃), N = 160 000.

Data Augmentation

• Time shift random ±1 s circular roll with zero padding.

xshift[n] = x
[
(n− s) mod N

]
.

• SpecAug 1 × frequency mask (F=20 bins) + 1 × time mask
(T=80 frames) on a magnitude spectrogram (400-pt FFT, 25
ms hop) [8]. A 16-step Griffin–Lim vocoder reconstructs the
waveform [9].

Smask(k, t) =

{
0, f0 ≤ k < f0 + F,

S(k, t), otherwise.

Smask(k, t) =

{
0, t0 ≤ t < t0 + T,

S(k, t), otherwise.

• Random gain uniform [-6 dB, +6 dB] (p = 0.5).
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Figure 1: Dual-tower architecture: a frozen BEATs audio encoder and a frozen BERT text encoder produce modality-specific embeddings,
which are concatenated and fed to a lightweight MLP classifier. Only the MLP (and optionally the top L BEATs layers) are fine-tuned.

• Additive noise Gaussian noise mixed at a random 10–30 dB
SNR (p = 0.3).

y[n] = x[n] + σ η[n], (1)

σ =

√
Px

10SNR/10 , (2)

Px =
1

N

N−1∑
n=0

x[n]2, η[n] ∼ N (0, 1). (3)

Tokenizer The question string is concatenated with all answer
choices, lower-cased, and tokenised by BERT-Base-Uncased; se-
quences are padded or truncated to 128 sub-words. (For padding we
reuse the [PAD] token so that attention masks remain binary.)

2.3. Model Architecture

Our system is a dual-tower network (Fig. 1). Given an audio clip
x ∈ RN and a token sequence q= (q1, . . . , qT ), the forward path
is

a = fBEATs

(
x
) mean-pool−−−−−→ ā ∈ Rda , (4)

t = fBERT

(
q
)
= h[CLS] ∈ Rdt , (5)

z =
[
ā ∥ t

]
∈ Rda+dt , (6)

ŷ = MLP
(
z
) softmax−−−−−→ p ∈ [0, 1]C , (7)

where C is the number of answer choices. Only the parameters of
the two-layer MLP (and optionally the top L layers of BEATs) are
trainable; both encoders are otherwise frozen.

• Fusion & classification. We concatenate the two embeddings
and feed them to a two-layer multilayer perceptron

z = ReLU
(
W1[a; t]+b1

)
∈ R512, ŷ = W2z+b2 ∈ RK ,

where K is the number of answer choices. The model is trained
with label-smoothed cross-entropy.

2.4. Training Strategy

We train the model using a purely supervised objective without any
contrastive loss. The training configuration is as follows:

• Loss function: We use label-smoothed cross-entropy with ε =
0.05 over the multiple-choice logits:

Lsmooth
CE = (1− ε) · LCE + ε · Luniform.

• Optimiser: AdamW with two learning rates:

• 1×10−5 for all trainable text and fusion MLP parameters,
• 1× 10−6 for optionally unfrozen BEATs layers.

Weight decay is applied in our training and we experimented
with λwd ∈ {0.01, 0.001} and a no-decay run (λwd = 0).

• Scheduler: Cosine annealing schedule with warmup:

ηt = ηmin + 1
2
(η0 − ηmin)

(
1 + cos

(
π · t

Tmax

))
.

• Gradient handling: Gradients are clipped to ℓ2 norm
≤ 1.0. Automatic mixed precision (AMP) is enabled via
torch.cuda.amp.

• Data augmentation: During training we apply a class-
conditional MixUp at the waveform level. At every optimisa-
tion step we sample λ ∼ Beta(α, α) with α = 0.4 and blend
two clips only if they share the same ground-truth label:

x̃ = λxi + (1− λ)xj , yi = yj .

• Early stopping: Validation accuracy is tracked at the end of
each epoch. The model with the highest dev-set accuracy is
saved as the final checkpoint.

2.5. Inference and Evaluation

At test time both encoders remain frozen; the system performs a sin-
gle forward pass and chooses the answer with the highest softmax
probability. We report:

Overall accuracy on the development sets.
Per-question-type accuracy, enabling fine-grained error

analysis (audio tagging, vocalization, counting . . . ).

During inference on the evaluation set, the model predicts
only the choice letter (e.g., A, B, C). A post-processing script then
maps this letter to its corresponding answer text and writes the full
string to the final CSV file submitted to DCASE.
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Table 1: Dev-set accuracy (%) and key hyper-parameters of our
submissions.

ID Unfreeze Data Aug. WD Params Dev
layer (M) (%)

Sub 1 3 No 0 131.5 54.46
Sub 2 3 No 0 131.5 54.26
Sub 3 4 Yes 0.001 138.6 54.01
Sub 4 — Ens. — — (reuse) 55.07

Table 2: Dev-set accuracy (%) by question type. Best value is bold.
Type Sub1 Sub2 Sub3 Sub4

overall 54.46 54.26 54.01 55.07
both 63.36 63.54 63.78 63.78
sound counting 29.46 30.36 33.93 33.93
sound detection 30.55 29.89 27.91 30.42
audio tagging 50.00 52.50 55.00 55.00
remember 56.92 55.38 40.00 56.92
vocalization 48.65 45.95 45.95 48.65
apply frequency 36.67 30.00 33.33 36.67
apply duration 38.10 38.10 28.57 38.10
understand acoustics 78.26 69.57 82.61 82.61
species 25.00 18.75 25.00 25.00
audio detection 0.00 0.00 50.00 50.00

3. SUBMISSIONS AND RESULTS

3.1. System Variants

We submitted three single-model runs and one router–ensemble
(Table 1):

• Sub 1 — best checkpoint of a run with three unfrozen BEATs
layers and no data augmentation.

• Sub 2 — final checkpoint of the same configuration as Sub 1,
illustrating the effect of continued training.

• Sub 3 — best checkpoint with four unfrozen BEATs layers,
full waveform augmentation, and weight decay 10−3.

• Sub 4 — a lightweight router that sends each
question type to the model (Sub 1 or Sub 3) that
performs best for that type; no additional parameters are
trained.

3.2. Comparison with Baseline Systems

Table 3 contrasts our best run with the official baseline systems re-
leased for DCASE 2025 Task 5. The ensemble exceeds the strongest
baseline (Gemini-2.0-Flash) by 2.57 pp on the development set
while being two orders of magnitude smaller.

Table 3: Dev-set accuracy of baseline models versus our ensemble.

System Dev Acc. (%)

Qwen2-Audio-7B 45.0
AudioFlamingo 2 45.7
Gemini-2.0-Flash 52.5
Ours (Sub 4) 55.07

3.3. Discussion

Layer unfreezing. Moving from three to four trainable BEATs lay-
ers (Sub 1 → Sub 3) adds ≈ 7M parameters that adapt low-level
acoustic filters. The gain is clearest on categories that depend on fine
temporal resolution or event boundaries: sound counting (+4.5pp)
and audio tagging (+5pp) in Table 2. In contrast, tasks that rely on
stable semantic alignment between audio and text—remember, vo-
calization— lose 8–17pp, suggesting that too much feature drift in
the audio tower can mis-align with the frozen BERT embeddings.

We attribute the pattern in Table 2 to three interacting factors:

Spectro-temporal focus of higher BEATs blocks. Layers
10–12 of BEATs attend to short onsets and energy envelopes that
mark individual events. Unfreezing them lets the model re-shape
these detectors toward the mixed marine–urban domain of DCASE,
which boosts sound counting, audio tagging and the rare audio
detection queries that hinge on clear event boundaries. However,
the same re-tuning distorts mid-level abstractions (phonetic identity,
harmonicity) that BERT relies on for semantic grounding, reducing
accuracy on narrative or memory-style tasks.

Invariance introduced by SpecAug + MixUp. Frequency
masking and MixUp drive the network to ignore localised spectral
content and focus on presence rather than exact position. This is
ideal for binary decisions such as “is there a whistle in the clip?” but
detrimental when the start/end positions or fine durational structure
matter (apply duration, remember). Noise and gain jitter further
damp amplitude cues that BERT’s CLS embedding might use to
align words like “first” or “louder” with specific acoustic segments.

Sample-size imbalance across types. Bio-acoustic and count-
ing questions are the sparsest categories in the training set (< 5%
of clips). Augmentation effectively enlarges these sub-corpora, al-
lowing the four-layer model to generalise better on them even at the
cost of minor degradation elsewhere. For plentiful types such as
both and remember, the benefit saturates, so any drift in the repre-
sentation becomes a net loss.

These factors explain why Sub 1 (fewer trainable weights, no
augmentation) preserves global semantic alignment, whereas Sub 3
(four trainable layers, heavy augmentation) excels on event-centric,
data-sparse tasks. The router-ensemble in Sub 4 simply harvests
whichever inductive bias is more appropriate for each question
type, yielding the best overall score without additional parameters.

Waveform augmentation. The SpecAug+MixUp regime in
Sub 3 injects frequency masks, time masks, gain jitter and noise.
These perturbations mimic the variability of real-world sound
events, helping categories that hinge on short bursts of energy
(audio detection, which climbs from 0% to 50%). Conversely, the
same distortions can blur long-context cues needed for duration or
narrative questions, explaining the drop on apply duration (–10pp)
and the partial loss on remember.

Complementarity and ensemble. Because Sub 1 excels at
semantics-heavy and holistic queries while Sub 3 excels at event-
centric ones, routing each question type to its stronger
expert (Sub 4) combines the best of both worlds. The ensemble
preserves Sub 3’s improvements on sound counting, audio tagging,
and understand acoustics while restoring Sub 1’s advantages on
remember, vocalization and apply duration. The net result is a
further +0.61pp in overall accuracy,
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4. SUMMARY AND FUTURE WORK

We introduced EchoTwin-QA, a lightweight dual-tower system
that couples frozen BEATs and BERT encoders with a shallow
classification head for DCASE 2025 Task 5 Audio Question
Answering. A three-layer variant without augmentation already
surpasses the strongest baseline by 1.96 pp on the development
set, and a simple router–ensemble that combines this model with a
four-layer, heavily augmented counterpart raises overall accuracy
to 55.07 %.

Our next steps centre on addressing the clear domain gaps re-
vealed by the per-type evaluation.

We will pursue an ensemble strategy in which small special-
ist encoders—one trained on bio-acoustic corpora and another
on short-event sound detection—are combined with the current
BEATs + BERT tower. A lightweight “router” module will analyse
each (question, audio) pair and dispatch it to the most suitable
expert before logit fusion, allowing us to exploit strengths that a
single generic model cannot capture. We believe these directions
will push our audio QA system closer to human-level acoustic
reasoning in forthcoming challenges.
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