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ABSTRACT

This technical report presents our solution for DCASE 2025 Task 2:
Anomalous Sound Detection for Machine Condition Monitoring.
Our approach integrates BEATs and AudioMAE models through
two fusion strategies: 1) score-level ensemble of independently
fine-tuned models, and 2) feature-level fusion with unified atten-
tive statistical pooling. Both models employ LoRA-based adapta-
tion on combined historical and current DCASE datasets, enhanced
by source separation for clean-referenced machines and universal
noise augmentation. The anomaly detection mechanism leverages
prototype embeddings generated from KMeans clustering and target
samples. Achieving a 66.34% average AUC/pAUC score on the de-
velopment set, our system demonstrates 10.47% improvement over
the baseline, highlighting the effectiveness of hybrid fusion strate-
gies in capturing diverse normal sound patterns.

Index Terms— Anomalous sound detection, fine-tuning, ma-
chine sound separation, pre-trained

1. INTRODUCTION

Anomalous Sound Detection (ASD) aims to identify abnormal
acoustic events in industrial machinery without prior exposure to
fault patterns during training. This unsupervised paradigm presents
a fundamental challenge: models must learn comprehensive rep-
resentations of normal operation using exclusively nominal sam-
ples, yet detect subtle deviations caused by unseen anomalies dur-
ing testing. The domain shift between training and deployment en-
vironments further complicates this task, as acoustic signatures vary
significantly across machine types, operating conditions, and back-
ground noise profiles.

Transfer learning via pre-training and fine-tuning has emerged
as a dominant framework across audio domains, where models first
learn general acoustic representations from large-scale datasets be-
fore adapting to downstream tasks. Recent DCASE competitions
demonstrate this paradigm’s efficacy for ASD, with top-ranked so-
lutions [1, 2] leveraging models pre-trained on AudioSet [3] or other
sound corpora. Such approaches outperform traditional methods by
capturing normal sound characteristics through self-supervised ob-
jectives, effectively addressing the data scarcity inherent to indus-
trial settings.

This work introduces novel methodologies addressing two piv-
otal changes in DCASE 2025 Task 2 [4]: (1) Permission to utilize
historical competition data (2020-2024) significantly expands the

normal sound corpus, and (2) Provision of clean machine references
or isolated background noise enables targeted audio enhancement.
Our solution integrates these advancements through a hybrid frame-
work featuring:

• Two-stage Pre-training: We propose a sequential self-
supervised approach where models first learn machine sound
distributions via spectrogram reconstruction (generative self-
supervised learning (SSL)), followed by discriminative at-
tribute classification using cross-entropy loss. This dual-phase
strategy bridges representation learning and domain adapta-
tion.

• Source Separation Pipeline: For machine types with clean
references, we implement TF-GridNet-based [5] separation
trained on clean-noisy pairs. This preprocessing stage isolates
mechanical signatures while maintaining original inputs during
inference, effectively leveraging the newly provided acoustic
resources.

2. METHODOLOGY

Our solution employs two distinct self-supervised learning
paradigms through AudioMAE [6] and BEATs [7] models, each
addressing different aspects of normal machine sound modeling.

2.1. AudioMAE: Generative-Discriminative Hybrid

The AudioMAE branch combines spectrogram reconstruction and
discriminative learning. Pre-trained on AudioSet through masked
autoencoding with 80% random frequency masking, the model
first undergoes domain adaptation via generative SSL on combined
DCASE datasets. During this phase, random rectangular masks
spanning 64-128 frequency bins are applied, with reconstruction
targets set to original log-Mel spectrograms using L1 loss:

LMAE =
1

|M|
∑

(i,j)∈M

|X̂i,j −Xi,j | (1)

where M denotes masked positions. Subsequently, the model
transitions to discriminative learning using machine-type labels
from historical datasets, followed by final adaptation on DCASE
2025 data. Temporal averaging compresses features to ha ∈ RD .

Following the generative pre-training phase, the AudioMAE
branch undergoes two distinct discriminative fine-tuning stages to
adapt to the anomaly detection task.
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Phase I: Full Data Adaptation
In the first discriminative phase, we fine-tune the entire model (ex-
cluding frozen pretrained weights) on the combined dataset contain-
ing both historical DCASE data (2020-2024) and the 2025 training
set. This stage employs machine-type classification as the learning
objective, with compound labels encoding device attributes and op-
erating conditions (e.g., ”fan rpm 1800 load medium”). The cross-
entropy loss is computed as:

LCE = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c) (2)

where yi,c denotes the ground-truth label and pi,c the predicted
probability for class c. All model parameters except the frozen pre-
trained backbone are updated during this phase.
Phase II: 2025-Specific LoRA Tuning
The second discriminative stage focuses on task-specific adaptation
using only the DCASE 2025 dataset. Building upon the Phase I
model, we implement Low-Rank Adaptation (LoRA) [8] with rank
r = 8 for efficient parameter updates. The adaptation process mod-
ifies the self-attention layers in AudioMAE’s transformer blocks
through:

W′
q = Wq +BqAq, W′

k = Wk +BkAk (3)

where Wq,Wk are original query/key projection matrices, and
Bq,Aq their low-rank counterparts. This phase maintains the same
classification objective but reduces the learning rate to 1e−5 to pre-
vent overfitting to the limited 2025 data.

Both phases utilize identical data preprocessing pipelines but
differ in their augmentation strategies: Phase I and II introduce tar-
geted noise injection using 2025-provided background samples.

2.2. BEATs: Discriminative Attribute Learning

The BEATs branch focuses on learning discriminative features
through machine attribute classification. Initialized with weights
from the publicly released BEATs model pre-trained on AudioSet,
we implement a two-phase adaptation process similar to the pro-
cess of training AudioMAE. In Phase I, the model undergoes fine-
tuning using historical DCASE datasets (2020-2024 editions) with
machine-type labels formatted as compound attributes. This pro-
cess employs standard cross-entropy loss over 23 machine cate-
gories. Phase II continues the adaptation using DCASE 2025 train-
ing data with identical objectives but updated label spaces to only
the machine types in DCASE 2025. To keep the best of the original
model, we apply LoRA when fine-tuning the data in phase II. Tem-
poral features from the final transformer layer Hb ∈ RB×Tb×D are
compressed through attentive statistical pooling (ASP):

hb =

Tb∑
t=1

αtht, αt = softmax(w⊤ tanh(Wht)) (4)

where w ∈ RDa and W ∈ RDa×D are learnable parameters.

2.3. Ensemble Strategies

2.3.1. Score-Level Fusion

Our primary ensemble combines predictions from independently
adapted BEATs and AudioMAE models. Let s(i)b and s

(i)
a denote

anomaly scores for sample i from each branch. The final score is
computed as the mean of the output scores of those two models.

2.3.2. Feature-Level Fusion

Both models utilize frozen backbone weights trained from phase I,
and add LoRA adaptors for further fine-tuning. We implement two
distinct feature fusion approaches using frozen encoders with LoRA
adapters:
Attentive Fusion: Temporal features are concatenated before pool-
ing:

H
(i)
fused = [H

(i)
b ;H(i)

a ] ∈ R(Tb+Ta)×D (5)
A trainable attention mechanism generates fused embeddings:

h
(i)
fused =

Tb+Ta∑
t=1

αtht, αt = softmax(v⊤ tanh(Vht)) (6)

where v ∈ RDa and V ∈ RDa×D are newly initialized parameters.
Mean-Pooling Fusion: Features are compressed via temporal av-
eraging before concatenation:

h
(i)
fused =

[
1

Tb

Tb∑
t=1

h
(i,t)
b ;

1

Ta

Ta∑
t=1

h(i,t)
a

]
∈ R2D (7)

Both approaches are trained end-to-end on the DCASE 2025
dataset with the following constraints:

• Encoder weights remain frozen (LoRA adapters active)
• Pooling/attention parameters are trainable

2.4. Prototype-Based Anomaly Scoring

For each test sample xtest, we compute its embedding htest and com-
pare against a prototype set P constructed as:

P = {c1, ..., c16} ∪ {t1, ..., t10} (8)
where ck are KMeans centroids from 990 source samples and

tj are target sample embeddings. The anomaly score is computed
as:

s(htest) = min
p∈P

(
1− htest · p

∥htest∥∥p∥

)
(9)

This minimum cosine distance approach effectively identifies
deviations from established normal patterns.

2.5. Data Preprocessing and Augmentation

2.5.1. Source Separation for Clean Reference Machines

For machine types providing clean audio samples (e.g., “Toy-
Car”, “bearing”), we implement a TF-GridNet-based [5] separation
pipeline. Each machine type trains a dedicated model using clean-
noisy pairs from DCASE 2025 with a continuous loss function [10].

2.5.2. Universal Noise Augmentation

To homogenize acoustic conditions across all machine types, we
inject DCASE 2025-provided background noise into every training
sample. For machines without clean references (e.g., “Fan”, “Slide
rail”), random noise segments are mixed at SNRs between -5 to 10
dB. Clean-reference machines first undergo separation before noise
addition, ensuring consistent noise floors across the dataset.
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Table 1: The ASD performance (shown in %) of submitted systems on the test dataset of the DCASE 2025 Task 2 development dataset. H.
Mean in the first title row refers to the harmonic mean over all machine types. For metrics, sAUC: “source AUC”; tAUC: “target AUC”;
pAUC: “partial AUC”, H. Mean: “harmonic mean over all metrics”. System

Model Metric Bearing Fan Gearbox Slider ToyCar ToyTrain Valve H. Mean

System-1

sAUC 69.66 76.80 60.36 45.12 81.24 73.50 83.50 67.30
tAUC 65.94 65.62 70.12 64.72 80.16 59.12 87.96 69.39
pAUC 52.68 52.10 58.10 53.05 69.36 53.47 85.63 58.80

H. Mean 62.45 53.13 76.53 60.95 61.85 63.22 85.66 64.83

System-2

sAUC 76.40 79.56 74.28 62.82 87.54 78.02 82.08 76.53
tAUC 62.14 59.70 68.92 56.02 75.74 54.10 87.46 64.62
pAUC 49.78 49.31 61.31 55.26 70.00 52.73 85.89 58.49

H. Mean 67.75 57.84 77.10 59.69 60.89 60.49 85.08 65.74

System-3

sAUC 71.84 78.18 67.22 71.98 86.44 80.06 86.48 76.83
tAUC 65.55 63.82 74.94 43.52 82.28 64.68 86.46 65.77
pAUC 49.68 50.42 56.21 53.21 76.15 55.57 87.73 58.78

H. Mean 65.20 53.89 81.40 65.30 60.88 62.12 86.89 66.34

System-4

sAUC 68.76 75.82 65.98 63.56 83.36 80.64 84.16 73.76
tAUC 63.56 60.46 74.22 52.42 79.82 64.92 86.64 67.11
pAUC 48.47 50.10 56.00 53.36 73.84 55.63 86.94 58.23

H. Mean 64.53 56.02 78.81 65.53 58.93 60.38 85.90 65.75

Baseline [9]
(MSE)

sAUC 66.53 70.96 64.80 70.10 71.05 61.76 63.53 67.69
tAUC 53.15 38.75 50.49 48.77 53.52 56.46 67.18 51.39
pAUC 61.12 49.46 52.49 52.32 49.70 50.19 57.35 52.94

H. Mean 59.75 49.90 55.26 55.68 56.73 53.14 62.42 55.87

Baseline [9]
(MAHALA)

sAUC 63.63 77.99 73.26 73.79 73.17 50.87 56.22 65.51
tAUC 59.03 38.56 51.61 50.27 50.91 46.15 61.00 50.05
pAUC 61.86 50.82 55.07 53.61 49.05 48.32 52.53 52.72

H. Mean 61.45 51.34 58.61 57.58 55.87 48.37 56.37 55.34

3. EXPERIMENTS

3.1. Experimental Setup

Our experimental framework integrates three primary data sources:
AudioSet (2 million 10-second YouTube audio clips across 527
classes) for large-scale pre-training, historical DCASE Task 2
datasets (2020-2024 editions) containing official development
and additional training sets derived from ToyADMOS [13] and
MIMII [14] datasets, and the DCASE 2025 dataset following the
same structure with normal-only training samples and mixed nor-
mal/anomalous test data. The evaluation protocol employs four
metrics: source-domain AUC (sAUC), target-domain AUC (tAUC),
partial AUC (pAUC) over [0,0.1] false positive rates, and their har-
monic mean (H.Mean).

All experiments were conducted on NVIDIA L20 GPUs using
AdamW optimization (β1 = 0.9, β2 = 0.999) with base learning
rate 2 × 10−4, weight decay 1 × 10−5, and batch size 512. The
detailed training hyper-parameters are shown in Table 2.

3.2. System Description

The four developed systems are structured as follows:
System-1 constitutes a single-model approach using AudioMAE
with two-stage self-supervised learning.
System-2 implements score-level fusion by averaging anomaly
scores from two independent branches: 1) the AudioMAE pipeline
described in System-1, and 2) a BEATs model discriminatively fine-
tuned on identical data with LoRA adaptation (rank=8).
System-3 employs feature-level fusion through temporal concate-
nation of AudioMAE and BEATs embeddings, processed via train-
able attentive statistical pooling. The architecture freezes both en-
coders’ original parameters trained from Phase I while enabling
LoRA-based adaptation (rank=64) during end-to-end training on
this year’s dataset.
System-4 explores alternative feature fusion via temporal mean-
pooling.

3.3. Results and Analysis

Table 1 details performance comparisons on the DCASE 2025 de-
velopment test set. The AudioMAE single system (System-1) es-
tablishes a baseline H.Mean of 64.83, validating our hybrid SSL
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Table 2: Pre-training and Fine-tuning hyper-parameters. DC-T2
refers to task 2 of the DCASE challenge. DC-T2-all refers to all the
training data from 2020 to 2025. DC-T2-2025 refers to the training
data from this year. For augmentation, NA: “noise augmentation”.
For loss functions: MSE: “minimum square error”; CE: “cross en-
tropy”.

Configuration pre-training fine-tuning

AS-2M DC-T2-all DC-T2-all DC-T2-2025

Optimizer AdamW [11], β1 = 0.9, β2 = 0.999
Weight decay 0.00001

Base learning rate 0.0002
Learning rate schedule half-cycle cosine decay [12]
Minimum learning rate 0.000001

Warm-up epochs 3 10 10 2
Epochs 32 100 100 10

Batch size 512
Augmentation - NA NA -
Loss Function MSE CE CE

approach. Score-level fusion (System-2) achieves significant sAUC
improvement at slight tAUC/pAUC costs. Feature-level fusion via
temporal concatenation (System-3) delivers optimal overall per-
formance with a harmonic score of 66.34, outperforming mean-
pooling fusion (System-4). Valve detection demonstrates excep-
tional robustness, while Slider presents the most challenging sce-
nario.

Comparative analysis reveals our systems surpass conventional
auto-encoder baselines by 9.47 on average. The largest improve-
ment occurs in Gearbox ASD detection, surpassing by 26.14%,
demonstrating SSL’s superiority in capturing complex mechanical
patterns. Temporal feature fusion shows particular effectiveness for
ToyCar and ToyTrain , suggesting improved representation learning
for small mechanical components.

4. SUMMARY

This technical report presents a novel framework for DCASE 2025
Task 2, addressing two critical challenges through systematic in-
novations. First, by unifying historical DCASE datasets (2020-
2024) with current competition data, we develop a hybrid self-
supervised learning paradigm combining generative spectrogram
reconstruction and discriminative attribute classification. Second,
leveraging newly provided clean machine references, we imple-
ment TF-GridNet-based source separation to enhance acoustic pat-
tern learning. Our architecture integrates BEATs and AudioMAE
models through dual fusion strategies: score-level ensemble av-
eraging and feature-level temporal concatenation with attentive
pooling, both enhanced by LoRA-based parameter-efficient adap-
tation (rank=8). The proposed system achieves 66.34% average
AUC/pAUC on the development set, demonstrating 10.47% im-
provement over reconstruction-based baselines.
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