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ABSTRACT

This technical report focuses on anomalous sound detection (ASD)
in DCASE 2025 Task 2, we propose two deep learning approaches
based on multimodal feature fusion to enhance robustness and gen-
eralization across domains. In the data preparation stage, in order to
solve the problem of data complexity, this paper separates the pure
sound events and background noise provided by the organizer based
on TF-Locoformer, and constructs a more robust data set for model
training by reconstructing diversified training samples through ran-
dom combination. The first approach extracts frame-level wave-
form features using a fine-tuned BEATs model and aligns them with
Mel-spectrogram features extracted by MobileFaceNet. These are
fused and passed into an ArcFace classifier for joint attribute and
domain classification, enabling discriminative learning and multi-
task optimization. The second approach introduces a multimodal
autoencoder architecture combining BEATs and TgramNet for hi-
erarchical feature extraction, jointly trained with reconstruction and
classification losses. Our best model achieves a pAUC of 0.59.56 on
the validation set, demonstrating strong detection performance un-
der multi-source and complex background conditions.highlighting
the effectiveness and potential of the proposed methods in real-
world, multi-domain ASD scenarios.

Index Terms— Dcase, anomaly detection, BEATs, Mobile-
FaceNet, ArcFace

1. INTRODUCTION

In industrial environments [1], maintaining the health of machin-
ery is critical for ensuring operational continuity and reducing un-
planned downtime. Anomalous Sound Detection (ASD) [2] has
gained attention as a non-invasive, cost-effective approach for mon-
itoring machine conditions [3] by identifying deviations in acous-
tic patterns. Unlike traditional supervised approaches that require
large amounts of labeled anomalous data—which are often unavail-
able in real-world applications—DCASE 2025 Task 2 emphasizes
first-shot unsupervised ASD [4] [5] [6], where models must de-
tect unknown anomalies using only a few normal samples from
a target machine. This task poses significant challenges such as
domain shift [7], data scarcity, and generalization to unseen con-
ditions, making it a compelling benchmark for developing robust
and adaptable models. In this study, we explore ASD methods that
aim to improve performance in low-data and cross-domain scenar-
ios [8], aligning with the real-world demands of machine condition
monitoring.

Current research in ASD has made significant strides, with nu-
merous studies focusing on supervised learning approaches that rely

on large annotated datasets [9]. However, these methods are often
limited by the availability of labeled data and may not generalize
well to new, unseen anomalies. Recent advancements in unsuper-
vised and semi-supervised learning have shown promise in address-
ing these limitations [10], but challenges remain in achieving high
detection accuracy and robustness across different machine types
and environments.

In this work, we propose two complementary approaches tai-
lored for the DCASE 2025 Task 2, which target the challenge of
anomalous sound detection under domain shift and limited super-
vision. Both methods aim to leverage the powerful generalization
capability of pre-trained audio encoders BEATs [11], while enhanc-
ing model performance through multi-modal feature integration and
targeted optimization strategies.Specifically, the two proposed ap-
proaches are:

Approach 1: A discriminative multi-modal learning framework
that extracts temporal audio embeddings from BEATs and spectral
representations via Mel-spectrograms. These are fused and passed
through a MobileFaceNet backbone [12], followed by an ArcFace-
based [13] classifier to perform machine identity recognition and
domain classification jointly. This design encourages the model
to learn robust, domain-invariant representations under a multi-task
setting.

Approach 2: A reconstruction-based anomaly detection ap-
proach that employs a dual-encoder autoencoder structure, where
BEATs and TgramNet [14] extract hierarchical features. The model
is optimized with both reconstruction loss and auxiliary classifica-
tion loss. Anomaly scoring is conducted using Mahalanobis dis-
tance [15] computed in the latent space, enabling effective detection
of unseen anomalous patterns.

These two strategies complement each other by integrating both
discriminative and generative perspectives, thereby improving the
model’s ability to detect anomalous sounds across diverse acoustic
domains.

2. METHODOLOGY

This section presents two approaches developed for DCASE 2025
Task 2: a discriminative multimodal model and a reconstruction-
based self-supervised anomaly detection model. These methods
address the anomalous sound detection task from complementary
angles—discriminative learning and reconstruction-driven anomaly
scoring—aiming to improve anomaly detection accuracy and cross-
domain generalization. To further enhance model robustness, we
incorporate a data augmentation strategy based on TF-Locoformer,
which separates audio into foreground sound events and back-
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ground noise. By randomly recombining these components across
different domains, we generate diverse synthetic training samples,
significantly improving the models’ adaptability to complex and un-
seen acoustic environments.

2.1. Discriminative Multi-Modal Framework (Approach 1)

The Approach 1 network is a multi-modal deep learning framework
designed to enable efficient audio classification and feature learn-
ing by integrating various audio feature extraction methods. It com-
bines the BEATs model, TgramNet, and MobileFaceNet to extract
hierarchical semantic information from waveforms, spectrograms,
and frame-level representations. The multi-modal fusion strategy
effectively enhances the overall classification performance.

Initially, the network utilizes a pre-trained BEATs model
to extract frame-level features from input audio waveforms,
producing representations of shape [batch size, seq len,
hidden dim]. To tailor the model for the target task, the last
four encoder layers and the positional convolutional layer of BEATs
are unfrozen for fine-tuning, thereby improving task-specific per-
formance while preserving pre-trained knowledge. Concurrently,
the TgramNet module employs 1D convolutions and a deep con-
volutional encoder to derive spectral features directly from the raw
waveform, capturing rich time-frequency structures. Meanwhile,
MobileFaceNet serves as the backbone, employing lightweight
depthwise separable convolutions and bottleneck blocks to deeply
encode the fused multi-modal features, producing both classifica-
tion outputs and feature embeddings.

For feature fusion, the frame-level features from BEATs are in-
terpolated to align temporally with the spectral features, then con-
catenated with the TgramNet-extracted features and the input Mel-
spectrogram to form a unified multi-modal representation. This
representation is processed by MobileFaceNet’s deep convolutional
layers, allowing the network to effectively integrate and abstract
multi-modal features into global semantic representations.

Additionally, the ArcFace module is employed to introduce an
angular margin, thereby enhancing the discriminative power of the
learned features and improving generalization. To further improve
the network’s robustness, a multi-task learning objective is incor-
porated. Specifically, the model jointly optimizes an attribute pre-
diction loss (Lattr), and a domain classification loss (Ldom). The
overall training objective is defined as:

Lattr = CrossEntropy(fattr(x), yattr) (1)
Ldom = CrossEntropy(fdom(x), ydom) (2)

where fattr(x) and fdom(x) are the output logits of the at-
tribute and domain classifiers, respectively, and yattr and ydom are
the corresponding ground truth labels. The overall training objec-
tive is:

Ltotal = Lid + λattr · Lattr + λdom · Ldom, (3)
where Lid is the ArcFace-based identity classification loss, and

λattr and λdom are hyperparameters that balance the contributions
of the auxiliary tasks.

In summary, this framework captures multi-level semantic in-
formation from audio through coordinated multi-modal feature ex-
traction, fusion, and classification. Its modular design enables flex-
ible adaptation to various audio analysis tasks. By incorporating
fine-tuned pre-trained models, deep multi-modal fusion, and multi-
task learning, the model achieves significantly improved classifica-
tion performance and enhanced feature representation capability.

Figure 1: Discriminative Multi-Modal Training Framework

2.2. Reconstruction-based Anomaly Detection (Approach 2)

This approach adopts a reconstruction-based self-supervised
paradigm for anomaly detection. The central idea is to learn the
normal acoustic patterns of machines during training and identify
anomalies during inference based on reconstruction errors or devi-
ations in the latent representation.

The input audio waveform is simultaneously fed into two fea-
ture encoders: BEATs and TgramNet. BEATs captures high-level
temporal representations using a pretrained transformer-based ar-
chitecture, while TgramNet extracts complementary low-level spec-
tral features from the raw waveform via convolutional operations.
The extracted features are concatenated along the channel dimen-
sion to form a joint multi-scale representation.

This fused feature representation is then passed through a
lightweight convolutional autoencoder (Conv-AE), which is de-
signed to reconstruct the original input from its compressed latent
code. The encoder part of the Conv-AE transforms the input into a
low-dimensional latent vector, and the decoder attempts to restore
the original feature. In addition to reconstruction, the encoded latent
vector is also passed to an auxiliary classifier that predicts the ma-
chine identity, which guides the encoder to preserve discriminative
semantic information in the compressed space.

The model is trained using a joint loss that combines recon-
struction loss and classification loss. The reconstruction objective
is formulated as a mean squared error (MSE) between the original
and reconstructed features. The classification loss is computed us-
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Figure 2: NetMamba Encoder

ing cross-entropy between the predicted and ground-truth machine
IDs. The total training loss is defined as:

Ltotal = Lrecon + α · LCE , (4)

where Lrecon is the MSE loss, LCE is the cross-entropy loss,
and α is a balancing hyperparameter.

During inference, anomaly detection can be performed using
two complementary strategies. First, the Mahalanobis distance be-
tween the encoded latent feature and its corresponding class center
is computed to quantify distributional deviations, which serves as
an anomaly score. Second, the frame-level reconstruction error it-
self can be used directly as an alternative anomaly score. These
dual scoring mechanisms provide robustness against both structural
and distributional anomalies, enabling the model to effectively de-
tect unexpected machine sounds even under domain shifts or noisy
conditions.

2.3. Data Augmentation via Foreground–Background Separa-
tion

To improve the generalization ability of anomaly detection models
in the presence of complex and rare background conditions, a data
augmentation method based on foreground–background separation
using the TF-Locoformer model [16] is adopted. This approach
leverages the model’s strong source separation capabilities and its
dual-path structure that captures both global and local patterns in
the time–frequency (TF) domain. By recombining machine-related
foreground sounds with diverse background recordings, it is possi-
ble to generate a wider variety of training data that remain acousti-
cally realistic.

The TF-Locoformer is a Transformer-based network that inte-
grates self-attention for long-range dependency modeling and con-
volutional feedforward modules for local structure learning. It per-
forms separation of the input signal into two components: the fore-
ground, which typically contains operational or anomalous machine
sounds, and the background, which includes environmental noise,
reverberation, and other irrelevant acoustic elements. The training
of this separation model is conducted in a self-supervised manner,
relying on pseudo-labels derived from domain-specific priors and
reconstruction-based losses.

Once separation is completed, new training samples can be
constructed by recombining background and foreground segments.
Background components are collected from a wide range of ma-
chine types and environments to ensure diversity, while foreground
segments are randomly selected from machine recordings contain-
ing either normal or anomalous events. These two components are
mixed at various signal-to-noise ratios (SNRs) to simulate different
operational conditions. In some cases, a mixup-inspired interpola-
tion between different domains is applied to further expand the data
distribution and improve robustness to domain shifts.

This data augmentation pipeline helps enrich the training
dataset without requiring additional manual annotation, and con-
tributes to improved anomaly detection performance, especially un-
der mismatched or noisy background conditions. The TF-domain
separation model ensures that critical spectral and temporal features
are preserved during augmentation.

3. EXPERIMENTS

3.1. Data Preparation

We use the official training dataset provided by the DCASE chal-
lenge. For Approach 1, audio signals are first converted into log-
Mel spectrograms using a sampling rate of 16 kHz, an FFT window
size of 1024, a hop length of 512, and 128 Mel filter banks.For
Approach 2, the same preprocessing pipeline is applied to extract
log-Mel features. The model is trained for 50 epochs with a batch
size of 2048 and a learning rate of 0.001.

3.2. Submitted Systems

We submit four systems in total, based on two different model-
ing approaches. System 1 and System 2 are built upon Approach
1, which employs a discriminative multi-modal structure that takes
both raw waveform and Log-Mel spectrogram as input. The wave-
form and spectrogram are processed by BEATs and MobileFaceNet
respectively, and their extracted features are fused into a 256-
dimensional representation. This fused feature is used jointly for
machine ID and domain classification, with a domain alignment
module implemented via MMD loss to mitigate feature distribu-
tion discrepancies across modalities. The key difference between
the two systems lies in the BEATs backbone: System 1 fine-tunes
only the last four Transformer blocks and the positional convolu-
tion layer, while System 2 fully unfreezes the entire BEATs model
for joint training. During inference, anomaly scores are computed
based on GMM or Mahalanobis distance applied to the fused fea-
ture representation.

System 3 and System 4 are based on Approach 2, which adopts
a reconstruction-based strategy. In these systems, audio features
are extracted using BEATs ,then fed into a lightweight convolu-
tional autoencoder. The training objective includes both reconstruc-
tion loss and classification loss to ensure that the learned latent
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Table 1: Comparison of AUC and pAUC performance across different systems and machine types.

Machine Type System 1 System 2 System 3 System 4

AUC(s/t) pAUC AUC(s/t) pAUC AUC(s/t) pAUC AUC(s/t) pAUC

ToyCar 63.84 / 58.2 52.28 52.6 / 68.88 52.2 72.48 / 47.8 48.84 73.46 / 41.84 49.89
ToyTrain 73.28 / 64.28 51.98 73.84 / 60.96 52.14 46.78 / 50.36 48.74 40.76 / 49.08 48.26
bearing 71.76 / 71.12 55.16 68.88 / 67.72 55.16 59.94 / 62.58 63.21 59.28 / 60.52 61.84
fan 58.72 / 50.6 52.51 55 / 55.28 52.63 78.72 / 32.98 50.32 59.1 / 45.94 51.84
gearbox 73.24 / 82.64 54.02 72 / 78.24 53.88 74.3 / 49.62 54.53 70.92 / 50.48 52.68
slider 66.44 / 59.04 54.07 68.84 / 61.72 53.5 74.04 / 49.82 50.36 70 / 51.32 53.53
valve 96.68 / 79.04 53.71 94 / 76.6 54.49 52.58 / 55.98 51.31 53.1 / 56 51.68

All 69.21 / 56.65 56.66 68.18 / 56.4 59.56 60.94 / 50.74 54.84 61.33 / 47.69 51.19

representation captures both low-level signal consistency and high-
level semantic discriminability. The primary difference lies in the
anomaly scoring method: System 3 uses mean squared error (MSE)
between input and reconstruction as the anomaly score, while Sys-
tem 4 combines MSE with Mahalanobis distance computed in the
latent space between encoded features and their corresponding class
centers. This hybrid scoring method enhances robustness to subtle
anomalies.
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