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ABSTRACT

The technical report presents our submission system for Task 3 of
the DCASE 2025 Challenge: Stereo sound event localization and
detection (SELD) in regular video content. This year we participate
in the audio-only track. We propose a method that decomposes the
SELD task into two sub-tasks. For the detection task, we employ the
pre-trained Dasheng model [1], which is a high-performing audio
encoder. For the localization task, we utilize the ResNet-Conformer
[2] [3] architecture, which has demonstrated excellent performance
in recent years’ DCASE tasks. We evaluated our method on the
dev-test set of the development dataset. The results show that our
approach outperforms the baseline.

Index Terms— Sound event localization and detection, log-
mel spectrogram, Conformer

1. INTRODUCTION

The Sound Event Localization and Detection (SELD) task aims
to simultaneously identify the classes of sound events present in
an audio scene and estimate their corresponding spatial locations.
This task is of great significance in applications such as intelligent
surveillance, robotic auditory perception, and augmented reality.

In recent years, the DCASE challenges have greatly advanced
the development of SELD models. Since 2019 [4] , each edition of
the DCASE challenge has included a related task, with increasing
complexity year by year. New challenges introduced include the use
of real sound sources, overlapping events, and distance estimation.
In this year’s challenge, the input to the model has been changed
to stereo format for the first time, marking a significant step toward
real-world applications. In this year’s Task 3 [5] , participants are
required to estimate sound event classes, azimuth angles, and dis-
tance information using only stereo signals. In fact, stereo content
is much more prevalent and widely available in real-world scenarios
compared to FOA-format audio. Therefore, investigating methods
for achieving SELD using stereo signals holds significant research
value and practical application potential.

To address the SELD task, researchers have mainly proposed
two types of approaches. The first type employs a single-branch
model that jointly outputs sound event detection (SED), direction of
arrival (DOA), and source distance estimation (SDE) information.
Among them, the ACCDOA method [6] proposed in accdoa esti-
mates a directional vector, with its magnitude indicating the pres-
ence probability of the corresponding sound source. Building upon
this, [7] introduced the Multi-ACCDOA algorithm, which incor-
porates Auxiliary Duplicating Permutation Invariant Training (AD-

PIT) [8] to better handle overlapping events from the same sound
class.

Another popular approach is the multi-branch architecture,
where the initial layers of the network share parameters to extract
general audio features, and the final layer branches into multiple
fully connected heads that independently output SED, SDE and
DOA information. This method achieved the first place in DCASE
2024 Task 3 [9], demonstrating its strong capability in handling
complex acoustic scenes with effective task decoupling and joint
optimization.

Based on the two mainstream approaches mentioned above, we
note that sound event detection and classification is a relatively
more mature task compared to localization, with larger available
datasets and a more established research community. Therefore,
we believe it is beneficial to leverage pre-trained models trained on
tens of thousands of hours of audio data, and fine-tune them on
the competition dataset for the detection sub-task. Specifically, we
adopt the Dasheng model, a high-performance audio encoder based
on the Transformer architecture. For the localization task, con-
sidering the limited availability of well-annotated data, we choose
the ResNet-Conformer architecture, which has demonstrated strong
performance in recent DCASE SELD tasks.

2. PROPOSED METHOD

2.1. Data Augmentation

This year’s Task 3 dataset is a 5-second clip version derived from the
STARSS23 dataset [10] [11]. STARSS23 contains approximately
7.5 hours of real-world recordings covering 13 sound classes, with
annotations for sound source class, azimuth angle, and distance
provided every 0.1 seconds. In comparison, this year’s dataset in-
cludes a development set consisting of 30,000 5-second audio clips,
amounting to a total duration of approximately 41.7 hours. Further-
more, the dataset converts the original four-channel FOA-format au-
dio into stereo format through a defined transformation.

Although the dataset has seen a noticeable increase in scale
compared to previous editions, we observe that the number of sam-
ples for certain sound classes remains limited, which is insufficient
to support the training of a high-performing model. Therefore, data
augmentation is essential to improve model generalization and over-
all performance.

In the construction of the training dataset which we call
MixedAudioDataset, to obtain 5-second audio clips containing
sound events (referred to as ”mix” hereafter), we first randomly se-
lect a signal-to-noise ratio (SNR) and generate a background noise
mix. Then, using the event dataset from FSD50K-FMA [12] [13],
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we randomly sample 4 to 6 event instances (with replacement) from
each class. During dataset initialization, additional augmentation
event types can be introduced to adjust the occurrence ratios of cer-
tain events. Each event instance is randomly cropped to a specific
duration and undergoes various augmentations at different time in-
tervals, including gain control, polarity inversion, multi-band EQ,
time-domain masking, audio channel swapping(ACS) [14] [15] and
convolution with room impulse responses (RIRs). The start time
for inserting each event into the mix is also selected randomly. This
completes the data generation pipeline. Finally, the dataloader re-
turns the synthesized 5-second audio clip along with its correspond-
ing labels.

Figure 1: Data Augmentation Pipeline

Figure 2: Detection Model Architecture

Figure 3: Localization Model Architecture

2.2. Detection Model Architecture

In this part, we employ the Dasheng-Base pre-trained model,
which has 86 million parameters, to encode the input audio into
768-dimensional embedding vectors. Dasheng is a large-scale
self-supervised audio encoder, based on the Masked Autoencoder
(MAE) framework, designed to learn general-purpose audio repre-
sentations. Trained on over 272,000 hours of audio data—including
speech, music, and environmental sounds—Dasheng features up to
1.2 billion parameters , making it one of the largest self-supervised
audio models to date.

The model adopts an asymmetric Transformer-based encoder-
decoder architecture, in which only unmasked segments of the input
are processed, significantly reducing computational overhead while
enabling scalable training. Experimental results demonstrate that
Dasheng shows strong capabilities across music and environmental
sound classification. Furthermore, Dasheng’s learned embeddings
exhibit strong zero-shot transferability, enabling direct application
to downstream tasks without fine-tuning

In the detection model, audio features are extracted through
Dasheng. After upsampling the embedding output, it is mapped to
the (frames, classes) dimension using multiple fully connected (FC)
layers combined with batch normalization (BN) and ReLU activa-
tion. Finally, multi-label detection is performed using the Sigmoid
function.

2.3. Localization Model Architecture

Our localization model is based on the ResNet-Conformer architec-
ture. The inputs are log-mel spectrograms with shape B×2×251×64,
where the four dimensions represent batch size, channel number,
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time steps, and the number of mel filters, respectively. This is fol-
lowed by four ResBlocks, which replace the standard convolutional
blocks used in the baseline. Subsequently, Conformer blocks are in-
troduced to better capture both local and global features. Finally, a
fully connected layer maps the output to a tensor of shape B×50×26,
where the second dimension aligns with the number of labels, and
the last dimension represents the azimuth angle and distance pre-
dictions for each of the 13 classes.

2.4. Network Training

For the detection task, we use the MixedAudioDataset with full
event class random augmentation for sound event classification. For
validation and testing, we employ the AudioFrameDataset, deriving
from the STARSSS23 dataset. In each validation epoch, the optimal
threshold for each event class is computed based on performance,
and these thresholds are then applied during the test epoch to calcu-
late the F-score. The batch size is set to 128, and the learning rate
starts from 0, warms up to 0.001, and then follows a cosine decay
schedule over 200 epochs back to 0. We keep the top five models
corresponding to the highest F-scores on the validation set. For each
of these models, we also evaluate the F-score on the test set, and the
final model for inference is selected based on both validation and
test performance.

For the localization task, The batch size is set to 64, and the
learning rate starts from 0, warms up to 0.001, and then follows a
cosine decay schedule over 300 epochs back to 0. The loss function
used was mean squared error (MSE).

3. RESULTS ON DEVELOPMENT DATASET

We trained the final model using the two training folders provided
by DCASE and validated it on two separate test folders. The train-
ing folders contain a total of 16,214 samples from various rooms,
while the test folders include 13,786 samples. We made a total of
four submissions, with each submission differing slightly in data
augmentation strategies. Experimental results demonstrate that our
model outperforms the baseline approach across all evaluation met-
rics.

Table 1: Comparison of model performance with the baseline for
the development dataset

Model F-score
(20°/1)

DOAE RDE

Baseline 22.8 % 24.5° 41 %
Sub1 35.2 % 17.4° 38 %
Sub2 36.3 % 17.2° 37 %
Sub3 37.0 % 16.9° 39 %
Sub4 35.1 % 18.0° 37 %

4. CONCLUSION AND FUTURE WORK

In this year’s DCASE Challenge Task3, we employed a method
that combines a detection model with a localization model to
achieve SELD. For the detection part, we utilized the pre-trained
Dasheng model, while for localization, we adopted the ResNet-
Conformer architecture, which has previously demonstrated strong
performance. With the inclusion of necessary data augmentation

techniques, experimental results show that our approach achieves
promising results.

There are still several issues worth further investigation in the
future. For instance, how to predict the distance of sound sources
more accurately remains an open challenge. Additionally, identify-
ing individual source instances within the same event class is also
an interesting and meaningful research direction.
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