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ABSTRACT

This report presents our solutions for DCASE 2025 Task 2: First-
Shot Unsupervised Anomalous Sound Detection for Machine Con-
dition Monitoring. In this domain, pre-trained models have demon-
strated considerable potential, particularly in handling domain
shifts. We develop our systems based on BEATs and the EAT fam-
ily and explore various training strategies to enhance performance.
Sub-center loss and noise-aware training are employed to improve
system performance. By fusing various models and methods, we
achieve an hmean of 69.12% on the development dataset.

Index Terms— DCASE Challenge, anomaly detection, sound,
pre-trained model, noise-aware training

1. INTRODUCTION

In the realm of industrial automation, the ability to detect anomaly
sounds remains vital for ensuring operational reliability and pre-
venting potential failures. The DCASE 2025 Challenge Task
2 [1, 2, 3, 4], namely First-Shot Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring, continues to focus on
identifying anomalies in sounds from specific machine types. This
year’s challenge introduces additional complexity by expanding the
dataset to include both clean data and pure noise samples, which
further tests the robustness of algorithms in distinguishing genuine
anomalies from normal operational noise.

The complexity of this task lies in accurately distinguishing be-
tween normal operational noise and genuine anomalies, requiring
algorithms capable of learning from diverse acoustic patterns. In
practical production environments, the diversity of equipment types,
complex surroundings, and challenges with sound data collection
make it difficult to develop systems that can accurately identify
and classify abnormal sounds across different devices and environ-
ments. The main challenges can be summarized as follows:

• Data scarcity for training. While this year’s dataset includes
more samples, real industrial scenarios still face the fundamen-
tal issue of limited data for model training. Models must still
overcome the challenge of learning from relatively scarce ex-
amples of normal operations without anomalies.

• Domain shifts. The complexity of industrial production envi-
ronments, varied background noises, and differences in record-
ing equipment continue to cause distribution differences in au-

dio data. The additional clean data in this year’s dataset may
help mitigate but not eliminate these domain shift issues.

• Incomplete training labels. The data collection process still
faces the problem that not all machine types have available at-
tribute labels. Models must maintain good generalization per-
formance despite these limitations.

Following our previous works [5, 6, 7, 8], we continue to lever-
age pre-trained models to provide necessary generalization capabil-
ity across different machines. This year, due to changes in compe-
tition rules that permit the use of all available data from DCASE
2020 to DCASE 2025 for training, we find that certain methods,
such as LoRA [9] tuning and SMOTE [10], are no longer effective
when the data size scales up. Consequently, we choose not to em-
ploy these approaches. Instead, we introduce noise-aware training
and sub-center loss [11] to enhance model robustness and address
the issue of missing labels. All submitted systems are ensemble sys-
tems where single model scores are combined, with our best system
achieving a harmonic mean of 69.12% on the development set.

The structure of the paper is organized as follows. Section 2 in-
troduces the pre-trained models and the additional strategies. Sec-
tion 3 gives an overview of all the submitted systems. Section 4
presents the detection results.

2. METHODS

2.1. BEATs

BEATs [12], short for Bidirectional Encoder representation from
Audio Transformers, has demonstrated superior performance com-
pared to alternative pre-trained audio models. This self-supervised
learning framework employs an iterative optimization process be-
tween its acoustic tokenizer and audio self-supervised learning
(SSL) model components. The architecture generates rich seman-
tical discrete labels that effectively capture audio representations,
which is particularly beneficial for our classification objectives and
anomaly detection. We utilize the BEATs-iter3 version, which was
pre-trained on AudioSet [13] and contains 90M parameters.

For model adaptation, we perform attribute-based fine-tuning
across all machine types for DCASE 2020 to DCASE 2025. The
input processing pipeline standardizes audio segments to 10-second
durations, followed by log-mel spectrogram conversion using 25
ms frames, 10 ms frame shifts, and 128 mel bins. To enhance ro-
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bustness, we apply SpecAug [14] with a maximum masking length
of 80 on both the time dimension and the frequency dimension.
The model architecture incorporates an attentive statistics pooling
layer for frame-to-utterance embedding aggregation from ECAPA-
TDNN [15]. Two dense layers are appended to predict the logits.
Our classification approach dynamically adapts to label availabil-
ity: for samples with strong attribute annotations (DCASE 2022-
2025 data), we use these attribute labels as classification targets;
when only weak or no attribute labels exist (DCASE 2020-2021
data), we fall back to section labels as the classification criterion.
This hybrid strategy maximizes the utilization of all available labels
across different datasets. Training employs ArcFace [16] loss over
30,000 steps using AdamW [17] optimization, with 8-step gradient
accumulation, 360 warm-up steps, and batch size 32.

The anomaly detection system computes cosine distances be-
tween embeddings using a similarity score with a 1-nearest neigh-
bor approach, where the minimum distance to any training sample
serves as the anomaly score for each test instance.

2.2. Other SSL Models

In addition to BEATs, we also investigate the use of EAT [18] and a
self-developed SSL model. The self-developed model adopts short-
time fourier transform (STFT) as the input and models the sub-band
in a teacher-student framework. It is trained on 17k hours of au-
dio from Audioset [19], Freesound1, MTG-Jamendo [20] and Mu-
sic4all [21]. The self-developed model will be introduced in detail
in an upcoming reseach paper. Both models are fine-tuned on all
six DCASE datasets. During detection, we extract the [CLS] em-
bedding and conduct the identical anomaly detection pipeline with
BEATs.

2.3. Noise-Aware Training

To improve model robustness against environmental noise, we im-
plement noise-aware training utilizing the provided pure noise sam-
ples in the DCASE 2025 dataset. During training, each audio sam-
ple has a 50% probability of being mixed with randomly selected
noise at varying SNRs. Specifically, for each potentially corrupted
sample, we:

• Randomly select one noise sample from the provided collec-
tion

• Randomly choose an SNR level from {5, 10, 15, 20} dB
• Mix the original audio with noise at the selected SNR level
• Maintain the original label regardless of noise addition

This approach serves two key purposes: (1) it regularizes the
model against overfitting to the original training data, and (2) bet-
ter prepares the system for real-world conditions where machine
sounds often coexist with environmental noise. The SNR range is
selected to cover both challenging (5dB) and more moderate (20dB)
noise conditions, representing realistic industrial scenarios. No-
tably, we only use the officially provided noise samples from the
DCASE 2025 dataset, ensuring consistency with the evaluation en-
vironment.

1https://freesound.org/

2.4. Sub-Center Loss

We employ a Sub-Center ArcFace loss [11] to handle label ambigu-
ity and improve feature discrimination. The loss function enhances
traditional angular margin approaches by introducing multiple sub-
centers for selected classes:

L = − log
es(cos(θy+m))

es(cos(θy+m)) +
∑

j ̸=y e
s cos θj

(1)

where θy represents the angle between the embedding and its near-
est sub-center for target class y, s = 30 is the scaling factor, and
m = 0.2 is the angular margin. Key implementation details in-
clude:

• Sub-centers (k = 16) are only activated for: (1) all DCASE
2020-2021 machine types, and (2) DCASE 2024-2025 ma-
chine types without attribute labels

• Standard ArcFace (single center) is used for other cases
• During training, each sample automatically associates with its

nearest sub-center
• The margin penalty helps create more discriminative feature

spaces

This selective application of sub-centers provides two bene-
fits: (1) robustness for poorly-labeled or attribute-missing sam-
ples through introducing extra representation, while (2) maintaining
simpler discrimination boundaries for well-labeled classes.

3. SUBMITTED SYSTEMS

Our four submitted systems comprise ensembles derived from 13
systems, including one baseline system combining BEATs, EAT,
and the self-developed model with only sub-center loss applied, and
12 systems based on BEATs, employing different method combina-
tions and hyperparameters. For each system, we selected the top-3
performing checkpoints during training for the internal ensemble.

System 1 implements the fusion of all the systems based on
BEATs. System 2 presents the fusion across all 13 systems. System
3 combines the baseline system with two systems that show par-
ticularly robust score distributions on the DCASE 2025 evaluation
set. System 4 merges the baseline system with two top-performing
systems based on quantitative metrics.

Models are ensembled by linearly combining the anomaly
scores of different models, where the coefficients are attained by ei-
ther grid search or Bayesian optimization. The Bayesian approach
in system 1 automatically determines weights, whereas systems
3-4 use grid search to find coefficients that balance performance
and robustness. This multi-strategy ensemble framework provides
both comprehensive model averaging and targeted performance op-
timization.

4. EXPERIMENT RESULTS

The detection performance is evaluated using the standard met-
rics specified in the DCASE 2025 challenge: the Receiver Operat-
ing Characteristic (ROC) curve’s Area Under Curve (AUC), partial
AUC (pAUC) in the false positive rate range of 0-0.1, and their har-
monic mean. For each machine type, we compute both source and
target domain AUC scores along with pAUC values, then combine
them through harmonic averaging according to the official evalua-
tion baseline.
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Table 1: Results of four submitted systems on the development set

Machine Metric System 1 System 2 System 3 System 4

bearing

AUC s 68.26 66.76 65.74 66.22
AUC t 67.96 68.44 68.06 68.42
pAUC 60.68 58.79 58.00 58.11
hmean 65.44 64.38 63.63 63.93

fan

AUC s 61.54 61.42 61.24 61.36
AUC t 62.40 62.50 62.56 62.06
pAUC 55.42 55.89 55.42 55.79
hmean 59.62 59.79 59.57 59.60

gearbox

AUC s 80.96 82.92 83.10 82.90
AUC t 75.20 82.22 82.94 82.50
pAUC 68.79 67.53 67.79 67.53
hmean 74.65 76.86 77.24 76.94

slider

AUC s 88.40 91.98 91.92 92.12
AUC t 76.22 77.82 77.30 77.92
pAUC 60.63 59.95 59.68 60.05
hmean 73.30 74.25 73.94 74.36

ToyCar

AUC s 67.82 69.04 69.12 69.10
AUC t 63.22 63.26 62.76 63.20
pAUC 51.79 53.16 52.84 53.11
hmean 60.15 61.10 60.82 61.07

ToyTrain

AUC s 75.76 76.92 76.50 77.22
AUC t 74.70 70.34 69.20 70.26
pAUC 62.11 57.63 56.53 57.47
hmean 70.28 67.31 66.35 67.29

valve

AUC s 88.16 87.58 87.32 87.44
AUC t 93.92 94.06 93.60 94.04
pAUC 78.11 84.11 84.63 84.11
hmean 86.22 88.39 88.36 88.34

hmean

AUC s 74.59 75.19 74.91 75.13
AUC t 72.16 72.70 72.36 72.63
pAUC 61.53 61.17 60.75 61.02
hmean 68.94 69.12 68.76 69.02

AUC s and AUC t are the AUC of the source and target domains,
respectively.

Table 1 shows the detailed performances of four submitted sys-
tems. The AUC s, AUC t, pAUC, and the harmonic mean are cal-
culated for each system and machine type. The best result on the
DCASE 2025 development dataset is achieved by system 2, with a
harmonic mean of 69.12%.

5. CONCLUSION

This paper presented the SJTU-AITHU system for DCASE 2025
Task 2 on first-shot unsupervised anomalous sound detection. Our
approach leveraged BEATs and EAT pre-trained models enhanced
with noise-aware training to improve robustness against environ-
mental interference, while employing sub-center loss to address la-
bel missing and misalignment issues across different machine types
and datasets. As a result, the proposed system achieved a best har-
monic mean of 69.12% on the development set.
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