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ABSTRACT

This technical report describes the system we submitted to DCASE
2025 Challenge Task 2: First-Shot Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring.This year’s tasks are
fundamentally aligned with those of last year. To reflect practi-
cal application scenarios, machine attributes are not always fully
known. Building upon this, additional clean machine data or noise-
only data have been incorporated into the training set. Our system
employs the pre-trained model BEATs, utilizing the LoRA fine-
tuning approach for the anomalous sound detection task. Arcface
loss is incorporated to constrain machines with unknown attributes.
Our best system achieved a harmonic mean of 77.13% in the har-
monic mean of AUC in the source domain, 56.07% in AUC in the
target domain, and 57.72% in pAUC(p=0.1) on the development set.

Index Terms— First-shot, anomalous sound detection, pre-
trained model

1. INTRODUCTION

Anomalous Sound Detection (ASD) task aims to identify the oc-
currence of abnormalities through machine sound analysis. Due to
the scarcity of abnormal sounds, this is typically framed as an unsu-
pervised task [1–4].Furthermore, due to variations in environmental
noise during sound recording, physical parameters of equipment,
and differences in recording devices, potential domain shifts may
occur in sound detection systems. This can result in degraded ab-
normal sound recognition performance, which constitutes another
significant challenge that needs to be addressed [3, 4]. Since ma-
chine attributes may not always be known, yet systems must re-
main operational, building upon previous challenges, DCASE 2024
Challenge Task 2 [5] intentionally configures certain machine at-
tributes as unknown to better simulate real-world scenarios. In
DCASE 2025 Challenge Task 2 [6], supplementary training data
is provided, including normal machine sounds recorded during fac-
tory idle states or pure noise-only recordings when machines are
inactive to enhance anomalous sound detection accuracy.

In recent years, classification-based approaches have demon-
strated promising performance in anomaly sound detection. This
approach typically utilizes machine meta-information, such as at-
tributes and section IDs, with the classification task being utilized
as an auxiliary task for anomaly detection. When machine attributes
are known, models such as ST-gram [7], SW-WAVENET [8], and
Kevin’s CNN [9, 10] demonstrate strong performance. However,
when partial machine attributes are missing, the fine-grained knowl-

edge beneficial for anomaly detection, learned from audio of ma-
chines with known attributes, fails to generalize effectively to ma-
chines with missing attributes. The powerful generalization capabil-
ities of pre-trained models help mitigate this limitation. Anbai Jiang
et al. [11] first proposed applying pre-trained models BEATs [12]
to ASD tasks, achieving top performance on the DCASE23 Task 2
evaluation set by fine-tuning the model [13] using Low-Rank Adap-
taion(LoRA) [14]. Subsequently, on the DCASE24 dataset, Sub-
center ArcFace [20] was developed, enabling coarse-grained ma-
chines (machines with missing attribute labels) to adaptively cluster
within the feature space. Here, we

2. SYSTEM DESCRIPTION

2.1. Experimental setup

We conduct experiments on the dataset of DCASE 2025 Challenge
Task 2, which comprises a development dataset and an additional
dataset [15, 16]. Note that, the attribute information for 3 machine
types in the development dataset and 4 machine types in the addi-
tional dataset are not provided. Additionally, the machine types in
the development dataset are completely different from those in the
additional dataset.

The base feature extraction model of the submitted system
adopts BEATs. The input features are log-mel spectrograms with a
frame length of 25ms and a frame shift of 10ms. The number of mel
bins is set to 128. We use the BEATs-iter3 version, which is pre-
trained on the full training set of the AudioSet dataset and utilizes
90M parameters. All audio clips are uniformly cropped or padded
to 10 seconds. The model is trained for 30 epochs by AdamW [17]
with a maximum learning rate of 0.0001 and a batch size of 32.

2.2. Train

SpecAugment [18] is employed to input log-mel spectrograms with
a maximum mask length of 80 for time axis and 24 for frequency
axis. We incorporated LoRA [13] fine-tuning specifically on the
query and value projection matrices within the attention layers of
the first four transformer blocks in BEATs, utilizing the fourth
layer’s output as the model’s feature representation, and the rank
of LoRA is set to 64. We employed attentive statistics pooling [19]
layer followed by linear layers to project the output features from
BEATs to a 128-dimensional space. We employ ArcFace [20] for
machine attribute classification. Machines without attribute labels
are categorized into two classes: the source domain and the target
domain.
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Table 1: Result on DCASE 2025 task 2 development dataset

ToyCar ToyTrain bearing fan gearbox slider valve All(hmean)

AUC Source 83.74 80.74 76.82 72.70 80.16 74.30 72.90 77.13
AUC Target 69.08 60.80 46.46 41.86 60.92 50.26 82.04 56.07

pAUC 57.84 55.21 53.37 55.58 60.79 52.47 73.37 57.72

hmean 68.64 63.90 56.31 53.92 66.17 57.24 75.88 62.34

2.3. Test

We leverage the KNN detector from AnoPatch [11] to compute
anomaly scores based on pairwise cosine distances. Furthermore,
we augment each machine’s feature memory bank by incorporating
clean machine sound features from supplementary datasets, while
explicitly excluding pure noise segments.

2.4. Submission

The system we submit is one that utilizes the same model to output
anomaly scores at different epochs.

3. RESULTS

Performance evaluation metrics are computed based on the area
under the Receiver Operating Characteristic(ROC) curve (AUC).
These include the AUC Source, AUC Target, partial AUC (pAUC,
with p=0.1), and the Harmonic Mean. This aligns with the official
evaluation criteria.

Table 1 presents the results of our optimal system on the de-
velopment set of DCASE 2025 Challenge Task 2 for the 7 machine
types. The Source AUC, Target AUC, and pAUC (p=0.1) scores for
all machine types are 77.13% , 56.07%, and 57.72%, respectively.
The final Harmonic Mean score is 62.34%.

4. CONCLUSION

In this technical report, we described our submission systems for
the DCASE 2025 Challenge Task 2. Our submitted system is based
on the pre-trained model BEATs and fine-tuned with LoRA which
achieves promising performance under the constraint of the Arc-
Face loss even when some machine attribute labels are missing.
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