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ABSTRACT

The present report introduces four systems developed by the Au-
dioCC Lab at Shanghai Jiao Tong University for DCASE 2025
Task 4. The task at hand is to detect target sound events and sep-
arate corresponding signals from multi-channel mixture. It was
found that the effective detection of sound events and extraction of
the corresponding signals was challenging under conditions where
mixture consists of multiple target sound events, non-target sound
events, and non-directional background noise. In order to address
this challenge, we propose four systems. The first system repre-
sents an enhancement to the baseline system, the second is a multi-
stage iterative system that is both novel and promising, the third
is a lightweight model based on Encoder-Decoder Attractor (EDA)
module, and the fourth integrates multiple audio tagging models to
achieve optimal performance. These four systems cover high per-
formance, low overhead, and promising frameworks, providing a
reference for future research on this task.

Index Terms— audio tagging, label-queried sound separation,
iterative method, encoder-decoder attractor, model ensemble

1. INTRODUCTION

The DCASE 2025 Task 4 [1, 2], titled “Spatial Semantic Seg-
mentation of Sound Scenes”, is centered on detecting multiple tar-
get sound events and extracting corresponding signals from multi-
channel mixture.

In this challenge, the detection task [3] is simplified to an au-
dio tagging problem, which places greater emphasis on identifying
what is happening in the audio signal rather than the exact tim-
ing of the sound events. The diverse acoustic characteristics of
sound events, coupled with the simultaneous occurrence of multiple
sounds leading to overlapping events, pose significant challenges
and degrade detection performance. To address these challenges,
supervised learning models such as CED [4], PANN [5], and PaSST
[6] leverage large-scale datasets with tag annotations (e.g. AudioSet
[7]) for pretraining to perform classification tasks. However, these
models are unable to utilize the vast amounts of unlabeled data. On
the other hand, models employing unsupervised or semi-supervised
learning strategies, such as BEATs [8], SSLAM [9], EAT [10], and
Dasheng [11], focus on learning meaningful representations from
large amounts of unlabeled data. However, these models still strug-
gle to exhibit generalization capabilities when encountering unseen
or complicated samples.
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The separation task can be transformed into a target sound ex-
traction task based on weak labels [12, 13]. There are many well-
known audio separation models currently [14, 15], but they cannot
solve the label permutation problem. Therefore, some studies have
attempted to utilize some prior knowledge about the target sound,
which we refer to as clue (which can be a sound tag, video, audio,
or text) to extract the specified audio. In this task, labels of target
sound events are used for label-queried sound separation. In addi-
tion, multi-channel audio can provide additional spatial information
to help separate different sound sources.

In this technical report, we emphasize that we have made the
following contributions to the DCASE 2025 Task 4.

• Explores the effectiveness of supervised and unsupervised pre-
trained audio tagging models in this challenge and further at-
tempts to fine-tune the aforementioned models on different
scales to enhance performance.

• Investigates the impact of model ensembling with different
combinations on audio tagging performance.

• Provides a variety of effective strategies for the DCASE 2025
Task 4.

2. DATASET

For training and validation data, the DCASE 2025 Task 4 organizers
provide dry source sample files (Anechoic Sound Event 1K, newly
recorded by NTT + FSD50K [16] + EARS dataset [17]), RIR files
(NTT recorded + FOA-MEIR [18]), non-directional background
noise and interference event sound files (FOA-MEIR + FSD50K +
ESC-50 [19] + DISCO [20] that are used in Semantic Hearing [21]).
The input signals are designed to contain multi-channel audio mix-
tures with up to three simultaneous target sound events, along with
optional multiple non-target sound events and non-directional back-
ground noise. Each output signal is expected to contain one isolated
target sound event with a predicted label for the event class.

The audio tagging models were pre-trained on large-scale gen-
eral audio source datasets such as Audioset [7] and VGGSound
[22]. Audioset contains more than 2 million 10-second audio seg-
ments manually weakly labeled from YouTube, covering 632 au-
dio event categories, including a wide range of human and animal
sounds, musical instruments and music genre sounds, everyday en-
vironmental sounds, and so on. VGGSound covers 310 audio cat-
egories, including human voices, natural sounds, musical instru-
ments, and more. It contains more than 210,000 video segments,
each lasting 10 seconds and sourced from YouTube, with a total
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duration of over 550 hours.

3. SYSTEM DESCRIPTION

3.1. Baseline system

The organizers have provided two baseline systems: (a) M2D [23]
+ ResUNet [24] and (b) M2D + ResUNetK. Baseline (a) employs
an audio tagging model M2D, which takes the first channel of the
multi-channel mixture as input and extracts 1–3 labels from the out-
put probabilities. These label vectors are then fed into a ResUNet
model that accepts the spectrogram of the multi-channel mixture
as input. For each predicted label, ResUNet separately extracts the
corresponding sound source. Baseline (b) differs from (a) in that
the ResUNetK model takes the concatenation of multiple one-hot
encoded label vectors as input and processes all predicted labels si-
multaneously.

3.2. System 1: multi-channel M2D (AT) + SepformerK (LSS)

We adopted the M2D model for audio tagging and replaced the
separation model with the Sepformer [15]. The same as the base-
line, our M2D model is based on a version pre-trained on AudioSet
dataset [7] at 32 kHz, and we further fine-tuned it in two stages us-
ing the dataset provided for the challenge. First, we fine-tuned the
classification head, and then unlike the baseline, which fine-tuned 2
blocks, we fine-tuned the entire model. In addition, instead of using
only the first channel as in the baseline, we process each channel of
the multi-channel mixture with the M2D model and aggregate the
resulting probabilities using the power mean method. Sepformer
is a time-domain separation model. It processes long sequences
by segmenting them into smaller chunks and performing operations
both within and between these chunks. The model adopts a dual-
path structure design and utilizes transformers to learn the short-
and long-range dependencies in the audio. Here, we also imitated
the strategy in ResUNetK, enabling Sepformer to predict multiple
signals simultaneously based on the concatenated input label vector.

3.3. System 2: Two Stage Iterative Method

Sound separation has been used as a preprocessing step to improve
the results of sound event detection [25]. And in contrast, [26] and
[27] show that the performance of an sound separation network can
be enhanced by incorporating the embedding information extracted
by a sound classifier model. Therefore, we considered whether
these two findings could be combined. To enhance the detection and
separation performance, we introduced a two-stage iterative tagging
and separation model as shown in Fig. 1. This model includes two
taggers (Tagger 1 and Tagger 2) and two separators (Separator 1
and Separator 2). For separators, we employed band-split RNN
(BSRNN, a frequency-domain separation model) [14]. Compared
with Sepformer, it can be trained faster and the overhead is lower.
In the first stage, Tagger 1 takes the 4-channel mixture as input and
outputs probabilities for 18 classes. These probabilities are aggre-
gated across the channel dimension by power mean and then used
as input to Separator 1. Separator 1 combines the feature with the
aggregated probabilities from Tagger 1 to output three separated au-
dio sources. In the second stage, Tagger 2 takes the 4-channel mix-
ture and the three separated sources from Separator 1 (a total of 7
channels), outputs probabilities for 18 classes, and aggregates these
results through power mean method. Separator 2, during training,
receives ground truth labels, the 4-channel mixture, and the three

sources output by Separator 1 as extra channels, outputting sources
corresponding to each label; during inference, it uses the estimated
labels from Tagger 2 and 7-channel signals mentioned above as in-
put.

To accommodate the training needs of different modules, we
first used the weights of a fine-tuned M2D model as the initial
weights for the two taggers and froze them. And then we trained
the two separators. After this stage, we fine-tuned the entire model
(including the two taggers and two separators) with a smaller learn-
ing rate to optimize the overall performance of the system.

To ensure tagging accuracy, the outputs of Tagger 1 and Tagger
2, after aggregated, are compared with the ground truth labels to
compute the binary cross entropy (BCE) loss. The output of Sepa-
rator 1 is compared with the reference sources to calculate the per-
mutation invariant training (PIT) source-to-distortion ratio (SDR)
loss, and the output of Separator 2 is compared with the reference
sources corresponding to the labels to calculate the fixed-ordered
SDR loss.
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Figure 1: The structure of the two stage iterative method.

3.4. System 3: EDA module for Tagging and Separation

We employ SepEDA [28], which is built upon the Sepformer and
EDA module [29]. SepEDA estimates the number of target sound
sources in the mixture and the representation embeddings of each
source, referred to as attractors. Each attractor is expected to rep-
resent a target sound event. The model fuses these attractors into
the intermediate features respectively and finally outputs the corre-
sponding signal for each attractor. Besides, we appended a classifi-
cation head at the end of the EDA module to enable the attractor to
explicitly learn semantic information about the sound event class.
The separated sources are compared with the reference sources to
calculate the PIT SDR loss. Then the permutation obtained from
the PIT loss calculation is then used for the 18-class classification
BCE loss calculation. Additionally, we calculate the BCE loss for
sound source counting. It is important to note that, in contrast to
other systems which utilize separate tagger and separator, System
3 employs a single model to perform both tagging and separation,
which is conducive to the joint optimization of the entire system.

3.5. System 4: Ensemble Learning for Audio Tagging

In the audio tagging phase, we employed ensemble learning to fur-
ther enhance the performance. Specifically, we trained multiple
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Table 1: Performance Comparison of Audio Tagging Models with Finetuning When Separator is SepformerK.

Model # Params (M) Partial Model Finetuning Entire Model Finetuning

Acc (%) CA-SDRi (dB) Acc (%) CA-SDRi (dB)

BEATs 90.3 64.467 13.464 68.533 13.893
Dasheng 85.5 62.600 13.197 66.067 13.628
SSLAM 90.0 64.533 13.504 - -
M2D 85.5 63.133 13.259 70.467 14.023
CED 85.3 64.600 13.479 66.733 13.760

models, including BEATs [8], Dasheng [11], SSLAM [9], M2D
[23], and CED [4], to address the audio tagging task. Among them,
CED is a supervised pre-trained model, while the other models are
self-supervised pre-trained models. Each of these models was fine-
tuned on the challenge-provided dataset to leverage their unique
strengths and capture diverse features from the audio. To aggre-
gate the predictions from these audio tagging models, we simply
average the probabilities output from these models for each of the
18 classes.

4. EXPERIMENTAL SETUP

The experiment was conducted based on the baseline code reposi-
tory, and we have made some modifications to the codes to meet our
requirements. We used NVIDIA GeForce RTX 4090 and NVIDIA
A10 for training, with 4 GPUs for training the separation task and 2
GPUs for training the tagging task.

4.1. Setup for four systems

For System 1, we evaluated the performance of each pre-trained
model on the test set after fine-tuning them at different scales. For
M2D, we followed the baseline system and fine-tuned two blocks
and the entire model respectively. While for the other models, we
fine-tuned four blocks and the entire model respectively.

For System 2 and 3, we have roughly introduced the training
process in Section 3.

For System 4, based on the models trained in the experiments
of System 1, we tried different model combinations and selected the
one that performed best on the test set as our System 4.

4.2. Unreliable Validation Set

We found that the sounds of the AlarmClock class in the dry sound
sources of the validation set were completely different from those of
the AlarmClock class in the training set. The AlarmClock sounds in
the validation set don’t quite conform to the common understanding
of this type of sound. They are more like musical alarms. Among
the 540 mixtures in the validation set, 54 of them contain sounds of
the AlarmClock class, which may significantly reduce the reliability
of the validation set.

During the experiment, we did find that the performance of the
model on the test set of the development dataset was not closely
related to the loss on the validation set. Therefore, we referred more
to the loss on the training set to select the final model. Additionally,
since we tried fine-tuning the entire audio tagging model during the
second stage of training, which might lead to overfitting, we did not
train the model to convergence on the training set.

4.3. Evaluation Metric

In this year’s task, we need to simultaneously focus on both the tag-
ging and separation performance. Therefore, we adopted the class-
aware signal-to-distortion ratio improvement (CA-SDRi) [1, 2] pro-
posed by the organizers as the final evaluation metric. Since incor-
rect predictions do not contribute to any improvement in the metric,
the system must first tag the mixture accurately. The CA-SDRi for-
mula is shown in Equation 1 and Equation 2:

CA-SDRi
(
{x̂1, . . . , x̂K̂}, {x1, . . . , xK}, Ĉ, C, y

)
=

1

|C ∪ Ĉ|

∑
ck∈C∪Ĉ

Pck ,
(1)

where C represents the set of ground truth sound events, Ĉ denotes
the set of predicted sound events, and y is the audio mixture. The
terms {x̂1, . . . , x̂K̂} refer to the audio signals of the predicted in-
dividual sound events, while {x1, . . . , xK} are the audio signals
of the true individual sound events. The metric component Pck is
calculated as:

Pck∈C∪Ĉ =


SDRi(x̂k, xk, y), if ck ∈ C ∩ Ĉ

PFN
ck , if ck ∈ C and ck /∈ Ĉ,

PFP
ck , if ck /∈ C and ck ∈ Ĉ

(2)

where PFN
ck and PFP

ck are the penalty values for false negative (FN)
and false positive (FP) cases, respectively. Here they are both set to
0.

5. RESULTS AND ANALYSIS

This section comprehensively investigates the performance of audio
tagging models and separation models from multiple perspectives.
Finally, we present the performance results of our four systems.

5.1. Audio Tagging Models with Finetuning

As shown in Table 1, we attached a classification head to the end
of the pre-trained models and investigated the effects of different
degrees of fine-tuning. We present the tagging accuracy of audio
tagging models, and calculate the CA-SDRi metric when introduc-
ing the separator. It should be noted that due to time constraints and
the unreliability of the validation set, the models may not have been
trained to be optimal. And some experiments are even missing, such
as fine-tuning the entire model of SSLAM. However, it can still be
observed that fine-tuning the entire model can lead to better perfor-
mance, although it may cause overfitting, which can be mitigated
through various methods, such as weight decay and dropout.
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Table 2: Performance Evaluation of Four Systems and Baselines for Audio Tagging and Separation. MC stands for multi-channel input.

System Method Type Tagging Separation # Params (M) Acc (%) CA-SDRi (dB)

Baseline (a) Tagging + Separation M2D (finetune 2 layers) ResUNet 115.4 59.8 11.03
Baseline (b) Tagging + Separation M2D (finetune 2 layers) ResUNetK 115.4 59.8 11.09

System 1 Tagging + Separation MC-M2D (finetune all) SepformerK 105.1 73.933 14.381
System 2 Two Stage Iterative MC-M2D (finetune all) BSRNN 204 62.733 12.400
System 3 EDA module Linear head for attractors SepEDA 8.9 49.533 10.468
System 4 Tagging + Separation BEATs + MC-M2D SepformerK 195.4 76.267 14.657

5.2. Audio Tagging with Single-Channel or Multi-Channel

In the baseline system, M2D only uses the first channel of the four-
channel mixture. We have tried feeding each channel into the au-
dio tagging model separately and aggregate the probabilities corre-
sponding to each channel output by the model through the quadratic
power mean method. The results in Table 3 show that the model
using multi-channel audio performs better on the test set. This is
reasonable because multiple channels represent additional informa-
tion.

Table 3: M2D Model Performance: Single-Channel vs. Multi-
Channel Audio Tagging.

Model Acc (%) CA-SDRi (dB)

Single-Channel M2D 70.467 14.023
Multi-Channel M2D 73.933 14.381

5.3. Ensemble Approaches for Robust Audio Tagging

To improve performance, we tried various combinations of models.
The performance of some combinations is shown in Table 4. As
can be seen, an increase in the number of ensemble models does
not necessarily lead to an overall performance increase. Since we
use simple averaging method to aggregate the outputs of individ-
ual models, models with poorer performance can have a negative
impact on the entire system. Finally, based on the performance on
the test set, we chose BEATs + multi-channel M2D as the submit-
ted system 4. It should be noted that since time is limited and the
validation set is not so reliable, the performance of each model we
trained may not be optimal.

Table 4: Performance of Ensemble Approaches for Audio Tagging

Ensemble Configuration Acc (%) CA-SDRi (dB)

BEATs + MC-M2D 76.267 14.657
SSLAM + MC-M2D 74.867 14.467
BEATs + SSLAM + MC-M2D 75.533 14.600
BEATs + Dasheng + MC-M2D 74.933 14.496
All Models 73.667 14.419

5.4. Evaluation of Four Systems and Baseline: Tagging Accu-
racy and CA-SDRi Scores

Table 2 shows the number of parameters and the performance of
the baseline systems and our four systems. With our improvement,

the performance of System 1 has been significantly enhanced com-
pared to the baseline, while the number of parameters is similar to
that of the baseline system. System 4 introduces an additional tag-
ging model, and further enhances the performance of the ensemble
system. However, the number of parameters also increases signifi-
cantly. Due to the time limit and the complexity of the architecture,
System 2 was not trained to be optimal. However, System 2 in-
troduces extra processing on the basis of the baseline system and
should be promising. The tagging accuracy of System 3 is not good
enough, which might be due to the model’s insufficient ability to
handle complicated mixtures. However, similarly, the system has
not been fully trained and there is still room for further improvement
in performance. Meanwhile, the number of parameters of SepEDA
is very small, similar to that of Sepformer, which is a major advan-
tage of this system.

For each system, especially System 2 and 3, there is a lot of
room for further improvement. We may conduct some extra re-
search in the future.

6. CONCLUSION

This technical report presents the audio tagging and separation mod-
els developed by the AudioCC Lab at Shanghai Jiao Tong Univer-
sity. In the audio tagging challenge, we focused on finetuning large-
scale pre-trained general sound models, as illustrated in System 1.
To further enhance the performance, we employed ensemble learn-
ing techniques, which are exemplified in System 4. In the audio
separation task, we utilized advanced models such as Sepformer
and BSRNN. Additionally, we explored a multi-stage iterative sys-
tem, as demonstrated in System 2, and a lightweight model based
on the EDA module in System 3. Our ensemble system achieved the
highest score on the development dataset test set, with a CA-SDRi
of 14.657, representing a significant improvement over the baseline
of challenge.
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