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ABSTRACT

This technical report describes our submission to the language-
based audio retrieval task of the DCASE 2025 Challenge (Task 6).
Building upon our previous work, we retain the dual-encoder archi-
tecture that projects audio recordings and textual descriptions into
a shared embedding space. This year we focus on architectural and
training-level refinements within a single model framework. Specif-
ically, we fine-tune only the upper transformer layers of a PaSST
audio encoder, apply attention-based segment pooling, and replace
CLS token extraction in RoBERTa with masked mean pooling. Ad-
ditionally, we introduce time-frequency spectrogram augmentation
and reduce the hop size to capture more segment detail. Our im-
proved system achieves a mAP@10 of 36.005 on the ClothoV2 test
set, outperforming the official DCASE 2025 baseline without rely-
ing on external caption generation or model ensembles. The result
for mAP@16 as requested this year is 36.661 (without new annota-
tions). All code and trained models are available on GitHub1.

Index Terms— Audio-text retrieval, dual encoder, PaSST, at-
tention pooling, fine-tuning, ClothoV2

1. INTRODUCTION

Task 6 of the DCASE 2025 Challenge [1] focuses on language-
based audio retrieval, where the goal is to retrieve audio recordings
from a database given a natural language description. This retrieval
setting is appealing because it enables users to flexibly query for
arbitrary acoustic phenomena (such as sound events, background
textures, or combinations thereof) without being constrained to a
predefined taxonomy of sound labels.

From a technical perspective, however, this task is challeng-
ing as it requires bridging raw audio and natural language rep-
resentations. Most state-of-the-art systems adopt a dual encoder
approach [2, 3], where audio and text inputs are independently
encoded into a shared embedding space, and similarity between
modalities is computed via a dot-product or cosine similarity.

The best performing system last year [4] focused on improv-
ing retrieval by applying knowledge distillation from an ensemble
of pretrained models to produce soft targets for contrastive learning.
While this proved effective, our 2025 system builds upon that base-
line and explores a complementary direction: refining architectural
and training components within a single model setup.

Specifically, we introduce the following key improvements:

1https://github.com/FaSchpie/DCASE-Task-6

• Fine-tuning of PaSST: Instead of using the pretrained PaSST
model as a frozen feature extractor, we enable end-to-end train-
ing of the higher transformer layers (8–11), while keeping the
lower layers frozen for stability and generalization.

• Segment attention pooling: Rather than averaging segment
embeddings, we apply a learnable attention mechanism to ag-
gregate information over overlapping temporal segments.

• Improved audio preprocessing: We introduce spectrogram-
level augmentation via time and frequency masking, and use a
smaller hop size during segmentation to better capture acoustic
dynamics.

• Text encoder enhancements: Instead of relying on the
[CLS] token from RoBERTa, we apply masked mean pooling
over the entire sequence, leveraging the full contextual repre-
sentation of the caption.

• Training and optimization tweaks: We include mod-
erate weight decay, increase matmul throughput via
torch.set float32 matmul precision("medium"),
and enable distributed training robustness using
ddp find unused parameters true.

Compared to previous editions, the 2025 task introduces multi-
ple textual annotations for each audio in the public evaluation set,
enabling a richer evaluation via multiple query formulations. In our
experiments, we do not explicitly leverage these extra annotations,
and instead report results using only the original caption per audio
as provided in Clotho-evaluation.

Together, these architectural and training modifications lead to
substantial gains in retrieval performance, without requiring syn-
thetic captions or model ensembles. We report results on the
ClothoV2 benchmark [5] and discuss each component in detail in
the following sections.

2. MOTIVATION

While many captions in datasets like ClothoV2 and WavCaps de-
scribe overlapping acoustic scenes, our system does not explicitly
model such relationships. However, recognizing this redundancy
motivates the use of stronger language and audio encoders capable
of generalizing across semantically similar descriptions [2, 4].

In this year’s system, we build on top of the 2024 winning
submission [4] but shift our focus from knowledge distillation to-
ward improving the underlying model architecture and training
pipeline. Our motivation stems from the hypothesis that careful
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control over fine-tuning, segment-level attention, and modality-
specific pooling strategies can significantly improve retrieval per-
formance—without the need for external ensembles or synthetic
captions.

Furthermore, we conduct systematic experiments with various
combinations of audio and text encoders. These experiments re-
veal that architecture choice and compatibility between modalities
strongly impact final retrieval accuracy (see Section 3). This sug-
gests that performance gains can be achieved not only through data
augmentation or loss engineering, but also through deliberate archi-
tectural design.

3. EXPLORING AUDIO AND TEXT ENCODER VARIANTS

We further investigate the impact of encoder selection on retrieval
performance by testing combinations of PaSST, CLAP, Whisper,
and different sentence encoders (e.g., RoBERTa, MPNet, GTR-T5,
BGE). Results are summarized in Table 1.

We observe that PaSST combined with roberta-large per-
forms best overall, while models based on GTR-T5 underperform
significantly, suggesting a mismatch with the contrastive learning
setup or non-optimal training setup.

Table 1: Retrieval performance on the DCASE Task 6 test set for
various model configurations.

Model R@1 R@10 R@5 mAP@10

whisper all-mpnet-base-v2 0.0513 0.2857 0.1834 0.1108
whisper gtr-t5-large 0.0010 0.0096 0.0048 0.0028
whisper bge-base-en-v1.5 0.0524 0.2936 0.1901 0.1124
whisper deberta-v3-large 0.0500 0.2630 0.1679 0.1016
whisper roberta-large 0.0620 0.3087 0.2027 0.1232
data2vec bge-base-en-v1.5 0.0036 0.0337 0.0184 0.0106
clap all-mpnet-base-v2 0.1234 0.4802 0.3478 0.2204
clap gtr-t5-large 0.0010 0.0096 0.0048 0.0028
clap bge-base-en-v1.5 0.1305 0.4804 0.3458 0.2250
clap roberta-large 0.1298 0.4901 0.3545 0.2266
passt all-mpnet-base-v2 0.1625 0.5638 0.4153 0.2733
passt gtr-t5-large 0.0010 0.0096 0.0048 0.0028
passt bge-base-en-v1.5 0.1732 0.5747 0.4274 0.2828
passt roberta-large 0.1797 0.5878 0.4467 0.2924

4. PROPOSED METHOD

Our retrieval system follows the standard dual-encoder architecture
where audio recordings and text captions are independently embed-
ded into a shared multimodal space using a pair of encoders ϕa(·)
and ϕc(·). At inference time, the similarity between an audio query
ai and a caption cj is computed via their cosine similarity:

Cij =
ϕa(ai)

⊤ϕc(cj)

∥ϕa(ai)∥2∥ϕc(cj)∥2
(1)

The model is trained with a contrastive loss based on the
temperature-scaled cross-entropy [6]. For each training pair
(ai, ci), we treat all other examples in the batch as negatives and
minimize:

Lsup = H(pa, qa) +H(pc, qc) (2)

where qa(ai | cj) and qc(cj | ai) are softmax distributions over
similarity scores, and pa, pc are target distributions assuming one
positive per caption and audio (i.e., pa(ai | cj) = 1i=j).

Unlike last year’s approach [4], we do not rely on an ensemble
for generating soft alignment targets. Instead, our contribution fo-
cuses on enhancing the model’s architecture and training efficiency
to boost performance with a simpler setup.

Audio Encoder. We use PaSST [7] as our base encoder. Dif-
ferently from prior work, we fine-tune only the top 4 transformer
layers (8–11), freezing the lower layers to retain general-purpose
audio features while adapting to the retrieval task. Additionally, we
increase segment coverage by reducing the hop size to 5s and ap-
ply time and frequency masking on the input mel-spectrograms for
regularization.

Segment Pooling. To combine multiple audio segments into
a fixed-size embedding, we replace mean pooling with an atten-
tion mechanism that learns segment relevance weights. Given a se-
quence of segment embeddings {z1, ..., zT }, we compute attention
weights αi and use them to form a weighted sum:

AttnPool(z1, ..., zT ) =
T∑

i=1

αizi (3)

where αi = softmax(W2 tanh(W1zi)).

Text Encoder. We use RoBERTa-large [8] to embed the cap-
tion and, instead of using the [CLS] token as in earlier works, we
apply masked mean pooling over the valid tokens. This makes the
embedding more robust to sentence structure and punctuation noise.

Optimization. We optimize the model using
AdamW with cosine learning rate decay and light reg-
ularization (weight decay = 1e−4). We also use
torch.set float32 matmul precision("medium")
for faster training and apply the
ddp find unused parameters true strategy for stability
with partial fine-tuning.

5. RESULTS

We evaluate our system on the official ClothoV2 test set using
the standard metrics for retrieval: Recall at rank 1, 5, and 10
(R@1, R@5, R@10) as well as mean Average Precision at rank 10
(mAP@10) and 16 (mAP@16), without the new annotations. We
chose not to include the additional annotations in our evaluation to
maintain consistency with the official Clotho-evaluation setup and
to isolate system performance on non-redundant textual queries. We
pre-trained all models on AudioCaps, WavCaps, and ClothoV2. Ta-
ble 2 summarizes the performance of our model compared to the
provided baseline system.

Table 2: Retrieval performance on the ClothoV2 test set.
Model mAP16 mAP@10 R@1 R@5 R@10

Baseline (DCASE 2025) - 35.23 23.29 52.17 64.78
Ours (PaSST-v2 + attention) 36.661 36.005 24.072 51.78 65.327

Our improved model outperforms the baseline on most metrics,
particularly in terms of mAP@10 and top-1 and top-10 recall. This
suggests that the combination of partial fine-tuning, attention-based
segment pooling, and improved preprocessing leads to more precise
and consistent retrieval results. The R@5 score remains essentially
unchanged, indicating that most gains are concentrated at the top
and bottom ranks.
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