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ABSTRACT 

This report presents the AISTAT team’s submission to the lan-

guage-based audio retrieval task in DCASE 2025 Task 6. Our pro-

posed system employs dual encoder architecture, where audio and 

text modalities are encoded separately, and their representations 

are aligned using contrastive learning. Drawing inspiration from 

methodologies of the previous year’s challenge, we implemented 

a distillation approach and leveraged large language models 

(LLMs) for effective data augmentation techniques, including 

back-translation and LLM mix. Additionally, we incorporated 

clustering to introduce an auxiliary classification task for further 

finetuning. Our best single system achieved a mAP@16 of 46.62, 

while an ensemble of four systems reached a mAP@16 of 48.83 

on the Clotho development test split.  

 

Index Terms— audio-text retrieval, contrastive learn-

ing, knowledge distillation, topic modelling 

1. INTRODUCTION 

DCASE 2025 Task 6 challenge [1] focuses on language-based au-

dio retrieval, a task that requires retrieving audio recordings from 

a database that best matches a given textual query, and vice versa. 

This task is critical for applications such as content-based multi-

media search, audio annotation, and cross-modal understanding, 

where aligning audio and text modalities in a shared semantic 

space is essential. Unlike traditional audio classification or tag-

ging, language-based audio retrieval demands models that capture 

nuanced semantic relationships between free-form text descrip-

tions and complex audio signals, which may contain overlapping 

or ambiguous acoustic concepts. 

Our approach builds on DCASE 2024 Task 8 [2], adopting a 

dual-encoder architecture with advanced techniques, such as dis-

tillation loss, LLM-based data augmentation, and auxiliary classi-

fication. These methods aim to enhance the model’s generaliza-

tion, robustness, and ability to capture fine-grained audio-text re-

lationships. 

The remainder of this paper is organized as follows. Section 

2 describes the proposed system in detail. Section 3 outlines the 

datasets, models, and training protocols. Finally, Section 4 pre-

sents the experimental results and describes the submitted systems. 

 
* Corresponding author 

2. METHOD 

Our system leverages a dual-encoder architecture, where audio 

and text inputs are processed by separate encoders and aligned in 

a joint embedding space. We enhance this framework with con-

trastive learning, distillation loss, an auxiliary classification task, 

and data augmentation, as detailed below. The overall structure is 

illustrated in Figure 1. 

2.1. Contrastive learning 

We employed a contrastive learning framework as the founda-

tional approach to align audio and text representations. Contras-

tive learning seeks to create a joint embedding space where cor-

responding audio-text pairs are closely aligned, while non-corre-

sponding pairs are distanced [3]. This is accomplished by opti-

mizing the InfoNCE loss, which maximizes the cosine similarity 

of matched audio-text embeddings and minimizes it for un-

matched pairs within a batch. 

Let 𝜙𝑎  and 𝜙𝑐  denote the audio and text encoders, respec-

tively, which map audio inputs 𝑎𝑖 and text captions 𝑐𝑗  to their re-

spective embeddings. The similarity between an audio embedding 

𝜙𝑎(𝑎𝑖) and a text embedding 𝜙𝑐(𝑐𝑗) is defined as the normalized 

cosine similarity:   

𝐶𝑖𝑗 =
𝜙𝑎(𝑎𝑖)𝑇 ⋅ 𝜙𝑐(𝑐𝑗)

∥ 𝜙𝑎(𝑎𝑖) ∥2∥ 𝜙𝑐(𝑐𝑗) ∥2

, (1) 

where ∥⋅∥2 represents the L2 norm, ensuring unit-normalized em-

beddings. We compute softmax-normalized probabilities for au-

dio-to-text and text-to-audio retrieval as:  

𝑞𝑎(𝑎𝑖|𝑐𝑗) =
exp(𝐶𝑖𝑗/𝜏)

∑ exp(𝐶𝑘𝑗/𝜏)𝑁
𝑘=1

, (2) 

𝑞𝑐(𝑐𝑗|𝑎𝑖) =
exp(𝐶𝑖𝑗/𝜏)

∑ exp(𝐶𝑖𝑙/𝜏)𝑁
𝑙=1

(3)

 

where 𝜏 > 0 is a temperature parameter controlling the softness 

of the distribution. We used 𝜏 = 0.05  in all our experiments. 

These probabilities reflect the model’s confidence in matching au-

dio 𝑎𝑖 to caption 𝑐𝑗 , and vice versa, relative to other items in the 

batch. The supervised contrastive loss is the sum of cross-entropy 

losses between the predicted probabilities (𝑞𝑎 , 𝑞𝑐) and the ground-

truth distributions (𝑝𝑎, 𝑝𝑐), where 𝑝𝑎 and 𝑝𝑐 assign a probability 

of 1 to the positive pair and 0 to negative pairs: 
𝐿sup = 𝐻(𝑝𝑎, 𝑞𝑎) + 𝐻(𝑝𝑐 , 𝑞𝑐), (4)

where H is the cross-entropy loss. 
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Figure 1: Overview of our system. The pretrained model is used to generate targets for the distill loss. After the finetuning phase, 

clustering is performed separately on audio and text data to assign pseudo-labels. These pseudo-labels are utilized to introduce an 

auxiliary classification task, which guides the re-finetuning process. 

2.2. Distillation loss  

To address the binary correspondence assumption in audio re-

trieval datasets like ClothoV2, where captions may describe mul-

tiple recordings due to overlapping acoustic concepts or limited 

diversity, we adopted a distillation loss approach from the top-

ranked DCASE 2024 Task 8 system [4]. This method uses soft 

correspondence probabilities from an ensemble of pretrained 

models to capture nuanced audio-text relationships, improving 

generalization.  

Formally, we first compute the similarity between audio embed-

ding and text embedding as defined in Section 2.1. An ensemble 

of M pretrained models generates soft correspondence probabili-

ties by averaging their similarity scores:  

�̂�𝑖𝑗 =
1

𝑀
∑ 𝐶𝑖𝑗

𝑚

𝑀

𝑚=1

. (5) 

These averaged similarities are used to compute soft probabilities 

in a knowledge distillation-like procedure: 

�̂�𝑎(𝑎𝑖|𝑐𝑗) =
exp(�̂�𝑖𝑗/𝜏)

∑ exp(�̂�𝑘𝑗/𝜏)𝑁
𝑘=1

, (6) 

�̂�𝑐(𝑐𝑗|𝑎𝑖) =
exp(�̂�𝑖𝑗/𝜏)

∑ exp(�̂�𝑖𝑙/𝜏)𝑁
𝑙=1

(7)

 

The distillation loss is calculated as the cross-entropy between 

these soft probabilities and the model’s predicted probability: 

𝐿𝑑𝑖𝑠𝑡 = 𝐻(�̂�𝑎, 𝑞𝑎) + 𝐻(�̂�𝑐 , 𝑞𝑐). (8)
The total loss combines the supervised contrastive loss 𝐿sup with 

the distillation loss, weighted by 𝜆 = 1.0: 
𝐿 = 𝐿sup + 𝜆𝐿𝑑𝑖𝑠𝑡. (9) 

By leveraging these soft targets, the distillation loss enhances the 

model’s ability to capture complex relationships between audio 

recordings and captions, improving its generalization across di-

verse audio-text pairs. 

2.3. Cluster-based classification 

We propose a novel approach to enhance language-based audio 

retrieval by introducing an auxiliary classification task to further 

improve the model's representation learning. We perform cluster-

ing on all captions in the Clotho dataset to lay the foundation for 

an auxiliary task. We generate embedding for each caption and 

apply a clustering method similar to BERTopic [5], which typi-

cally involves dimensionality reduction, such as UMAP [6], fol-

lowed by density-based clustering, such as HDBSCAN [7], to 

group captions into semantically similar clusters. Each caption is 

thus assigned to a specific cluster, representing latent topics or 

semantic patterns within the captions.  

 

Table 1: System ID (SID) for various training configurations 

SID Distill Augmentation Cluster weight 

1 X X X 

2 O X X 

3 O O X 

4 O O Finetuned 

5 O O BERTopic 

 

To leverage the clustering results, we extend the model ar-

chitecture by adding classification heads to both the text and audio 

encoders. The classification head for the text encoder is designed 

to predict the cluster label of the input caption, while the audio 

encoder’s classification head predicts the cluster label of the cor-

responding caption. Specifically, the output of each encoder is 

processed through two sequential linear layers with a ReLU acti-

vation function between them, projecting the output to a vector 

with dimensions equal to the number of clusters. The intermediate 

linear layer has a dimension three times that of the input to en-

hance representation capacity. This setup encourages the audio 

encoder to learn representations that are aligned with the semantic 

clusters of the captions, thereby enhancing the fine-grained align-

ment between audio and text.  

The total loss combines the supervised contrastive loss 𝐿sup 

from Section 2.1, the distillation loss 𝐿𝑑𝑖𝑠𝑡 from Section 2.2, and 

the classification losses for the audio and text encoders, denoted  

𝐿𝑐𝑙𝑠
𝑎  and 𝐿𝑐𝑙𝑠

𝑐 , respectively: 

𝐿 = 𝐿sup + 𝜆1𝐿𝑑𝑖𝑠𝑡 + 𝜆2(𝐿𝑐𝑙𝑠
𝑎 + 𝐿𝑐𝑙𝑠

𝑐 ). (10) 

In all experiments, we fixed 𝜆1 = 1.0 and 𝜆2 = 0.05 to balance 

the contributions of each loss term. 



Detection and Classification of Acoustic Scenes and Events 2025  Challenge 
  

SID Audio model 
Multiple annotation Single annotation 

mAP@10 mAP@16 mAP@10 R@1 R@5 R@10 

1 

PaSST 39.45 42.08 35.47 23.35 52.5 65.07 

EAT 38.11 40.41 35.13 23.44 51.12 63.87 

BEATs 35.66 38.12 34.15 22.74 49.51 63.75 

2 

PaSST 43.75 46.62 39.32 26.81 56.61 70.07 

EAT 42.83 45.35 39.50 26.79 56.40 69.44 

BEATs 41.36 43.89 37.92 25.26 54.81 69.00 

3 

PaSST 43.56 46.41 39.92 27.20 57.84 70.74 

EAT 43.37 46.05 40.28 27.52 57.63 71.35 

BEATs 42.09 44.66 38.42 25.51 56.02 69.44 

4 

PaSST 43.61 46.39 39.92 27.2 57.21 70.24 

EAT 42.83 45.34 40.02 27.43 56.59 70.62 

BEATs 42.01 44.58 38.61 25.88 55.94 69.46 

5 

PaSST 43.79 46.50 39.58 26.66 57.38 70.14 

EAT 42.65 45.34 39.73 26.67 57.28 70.18 

BEATs 41.32 43.88 38.23 25.26 56.06 69.86 

Ensemble 

E1 46.07 48.83 41.60 28.33 59.71 72.06 

E2 46.05 48.78 41.58 28.34 59.87 72.23 

E3 46.03 48.80 41.70 28.46 59.85 72.38 

E4 46.04 48.79 41.72 28.38 60.02 72.46 

 

Table 2: Retrieval performance of the models (first section) and the ensembled systems (second section). Note that SID stands for System 

ID, which is detailed in Table 1. 

2.4. Data augmentation 

To enhance the diversity of captions for our text-grounded audio 

retrieval, we employed caption augmentation leveraging the ca-

pabilities of a large language model (LLM), specifically GPT-4o 

[8]. One of the key techniques utilized was back-translation [9]. 

This method involves translating the original English captions 

into a randomly selected language and then translating them back 

into English. By doing so, back-translation generates captions that 

retain the same semantic meaning as the originals but feature var-

ied linguistic expressions.  

In addition to back-translation, we implemented another aug-

mentation technique called LLM mix [10] to further enrich our 

dataset. For this method, we randomly selected two audio-text 

pairs and combined their audio signals to create a new mixed au-

dio sample. To generate a corresponding caption for this mixed 

audio, we utilized GPT-4o to intelligently merge the captions of 

the original audio-text pairs. With LLM mix, we created 50,000 

new audio-caption pairs, adding substantial variety to our dataset 

3. EXPERIMENTS 

The following subsections provide comprehensive details on the 

datasets, models, and training protocols to ensure reproducibility. 

3.1. Datasets 

ClothoV2.1 [11] comprises audio recordings with durations rang-

ing from 15 to 30 seconds, each accompanied by captions con-

taining 8 to 20 words. The development set is divided into training, 

validation, and test splits. Each recording is paired with five cap-

tions created by human annotators.  

 

AudioCaps [12] consists of 51,308 audio recordings sourced 

from AudioSet, each 10 seconds long and paired with a single hu-

man-generated caption. The captions have an average length of 

9.8 words. For our experiments, we combined the training, vali-

dation, and test splits of AudioCaps into a single dataset, which 

was used for pretraining the model. 

 

WavCaps [13] is a weakly-labeled dataset containing 403,050 au-

dio recordings of varying durations, collected from sources in-

cluding FreeSound, BBC Sound Effects, SoundBible, and the 

strongly supervised subset of AudioSet. To adhere to this year’s 

updated competition rules, we excluded any recordings in 

WavCaps that overlapped with the evaluation subsets of Clo-

thoV2 and were used for pretraining as well. 

3.2. Audio embedding models 

The Patchout faSt Spectrogram Transformer (PaSST) [14] 

leverages pre-trained parameters from a vision transformer and 

fine-tunes them on the AudioSet dataset for general-purpose au-

dio tagging. By dropping patches from the input sequence, PaSST 

achieves a low computational and memory footprint. In our ex-

periments, we used a PaSST version without patch overlap, ap-

plying structured patchout of 2 and 15 over the frequency and time 

dimensions, respectively. 

 

The Efficient Audio Transformer (EAT) [15] is an audio self-

supervised learning (SSL) model focused on efficient representa-

tion learning from unlabeled audio data. It employs a novel Utter-

ance-Frame Objective (UFO) that combines global utterance-

level and local frame-level learning to improve audio understand-

ing. We initialized the models with publicly available pretrained 

weights, namely EAT-base_epoch30_pt.
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SID 2 3 4 5 

Model PaSST EAT BEATs PaSST EAT BEATs PaSST EAT BEATs PaSST EAT BEATs 

E1 0.2275 0.07 0.06 0 0.12 0.045 0.325 0 0.045 0.0975 0.01 0 

E2 0.2275 0.0875 0.04 0 0.15 0.03 0.325 0 0.03 0.0975 0.0125 0 

E3 0.225 0.175 0.1 0.03 0.01 0.01 0.195 0.045 0.06 0.09 0.03 0.03 

E4 0.18 0.14 0.08 0.09 0.03 0.03 0.13 0.03 0.04 0.15 0.05 0.05 

Table 3: Combination coefficients for four submitted system 

Bidirectional Encoder representation from Audio Transform-

ers (BEATs) [16] is a self-supervised learning framework de-

signed for pre-training comprehensive audio representations. It 

integrates an acoustic tokenizer with an audio SSL model, opti-

mized iteratively to generate discrete labels rich in audio seman-

tics. We also initialized BEATs with publicly available pretrained 

weights, namely BEATs_iter3_plus_AS2M. 

3.3. Sentence embedding models 

RoBERTa [17] is a BERT-based language model developed by 

Facebook AI that improves upon the original BERT pretraining 

methodology. By removing the Next Sentence Prediction (NSP) 

objective, extending training duration, increasing batch size, and 

leveraging a larger and more diverse corpus, RoBERTa achieves 

stronger performance in sentence-level representation learning. In 

our experiments, we used RoBERTa-large as a sentence embed-

ding extractor, utilizing its pretrained parameters to capture rich 

semantic information from textual inputs. 

3.4. Training 

Audio inputs were preprocessed to align with the pretraining con-

figurations of the respective models. Specifically, EAT and 

BEATs used a sampling rate of 16 kHz, while PaSST used 32 kHz. 

In all cases, audio was converted to log-mel spectrograms as the 

input representation. All models were trained using the AdamW 

optimizer. Learning rates were adjusted using a cosine warmup 

scheduler, with specific values detailed in the respective training 

stages. The training process was divided into three stages. Initial 

pretraining was conducted on the CLOTHO, WavCaps, and Audi-

oCaps datasets to learn general audio-text alignment, while the 

subsequent finetuning and re-finetuning stages were performed 

exclusively on the CLOTHO dataset. Each stage is described be-

low. 

 

Initial pretraining – We use a mix of Clotho development train-

ing split, AudioCaps, and WavCaps datasets. The training spans 

20 epochs. No data augmentation is applied in this phase. Due to 

computational resource constraints, we set batch size to 64 for 

PaSST, 24 for EAT, and 16 for BEATs. To accommodate these 

configurations, we adjusted the learning rates using a cosine 

warmup scheduler across all training processes. For PaSST, the 

learning rate decreased from 2e-5 to 1e-7, while for EAT and 

BEATs, it decreased from 1e-5 to 1e-7. These hyperparameter set-

tings were consistently applied in the subsequent finetuning and 

re-finetuning stages. 

 

Finetuning – In the finetuning phase, models were further trained 

for 20 epochs using ensemble soft labels. Soft labels were calcu-

lated as the average of the similarity matrices obtained from three 

audio models, as described in Equation 5, where M equals 3. 

These soft labels served as targets for a distillation loss, guiding 

the model toward a consensus representation. To enhance robust-

ness, we trained models with and without data augmentation. For 

the augmented models, we applied data augmentation techniques, 

including back-translation and LLM-based caption mixing, as de-

scribed in section 2.4. Random deletion and synonym replace-

ment were also applied to a single word in captions with an 80% 

probability, further increasing caption diversity.  

 

Re-finetuning with cluster-guided classification – In the re-

finetuning phase, we enhanced our model through cluster-guided 

classification. Clustering was conducted using two weight sources: 

our finetuned model weights and the pre-trained e5-large-v2 

weights, sourced from the e5 model family and utilized within the 

BERTopic framework [5, 18]. The e5-large-v2 model excels in 

clustering tasks by generating high-quality sentence embeddings 

that preserve semantic similarity in the embedding space. For 

each embedding set, we employed the BERTopic framework with 

HDBSCAN to assign pseudo-labels to text samples, reassigning 

outliers based on topic probabilities estimated by BERTopic. Re-

finetuning spanned 20 epochs.  

 

We evaluated four systems combining pretraining, distillation, 

caption augmentation, and cluster supervision. The configuration 

of these variants is summarized in Table 1.  

4. RESULTS 

Table 2 presents the performance of our four systems on the Clo-

thoV2 development test split. The systems, detailed in Table 1, 

vary in their use of distillation, data augmentation, and clustering, 

with three audio models. PaSST consistently outperformed EAT 

and BEATs across all systems, achieving the highest mAP@16.  

A weighted ensemble of Systems 2–5 significantly improved 

performance over individual systems. We employed two ensem-

ble strategies. In methods E1 and E2, we first calculated system-

level ensembles across Systems 2–5 and then computed weighted 

sums for each model. Conversely, in methods E3 and E4, we first 

computed model-level ensembles for each model by combining 

outputs from Systems 2–5, then performed a weighted sum across 

the systems. The weights for all ensembles were determined 

through grid search to optimize mAP@16 on the validation set. 

By leveraging the complementary strengths of the systems and 

models, the ensembles achieved a highest mAP@16 of 48.83. 

For the final submission, we retrained all systems on the en-

tire development split of the ClothoV2 dataset and submitted the 

weighted sum of their similarity matrices using the weights from 

Table 3. 
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5. CONCLUSION 

This paper described the AISTAT Lab’s system for text-grounded 

audio retrieval system. Inspired by the methodologies of top-per-

forming teams in the previous year, we applied data augmentation 

techniques leveraging LLMs and incorporated a distillation loss 

to enhance our model’s performance. Furthermore, by utilizing 

clustering, we introduced an auxiliary classification task to the 

training process, which contributed to additional performance 

gains. These combined strategies enabled our system to achieve 

improved results. 
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