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ABSTRACT

This paper presents an enhanced implementation of audio-text
cross-modal retrieval for DCASE 2025 Task 6, featuring advanced
contrastive learning techniques. Our system implements a dual-
encoder architecture using PaSST (Patch-out Fast Spectrogram
Transformer) for audio encoding and RoBERTa-large for text en-
coding, enhanced with multi-positive learning and hard negative
mining strategies. The proposed method introduces progressive
training with staged activation of advanced techniques, achieving
significant performance improvements over baseline approaches.
Experimental evaluation on the Clotho dataset demonstrates com-
petitive retrieval performance with R@1 of 18.68%, R@5 of
44.77%, R@10 of 59.35%, and mAP@10 of 30.01%. The im-
plementation supports mixed precision training and comprehensive
evaluation metrics for robust cross-modal retrieval.

Index Terms— Audio-text retrieval, contrastive learning,
multi-positive learning, hard negative mining, cross-modal retrieval,
PaSST, RoBERTa

1. INTRODUCTION

Language-based audio retrieval has emerged as a critical task in
multimedia understanding, enabling users to search through audio
collections using natural language descriptions. The DCASE 2025
Task 6 focuses on this challenging problem, requiring systems to ef-
fectively bridge the semantic gap between audio content and textual
descriptions.

Recent advances in contrastive learning have shown promising
results for cross-modal retrieval tasks. However, traditional con-
trastive learning approaches often treat all negative samples equally
and may miss opportunities to leverage semantic relationships be-
tween samples. This work addresses these limitations by intro-
ducing enhanced contrastive learning techniques including multi-
positive learning and hard negative mining.

Our contributions include: (1) Implementation of multi-positive
learning that identifies semantically similar samples as soft positives
with weighted loss computation, (2) Hard negative mining strategies
that focus training on challenging negative samples, (3) Progressive
training approach with staged activation of advanced techniques,
and (4) Comprehensive evaluation framework supporting multiple
datasets and metrics.

2. METHODOLOGY

2.1. Model Architecture

Our system implements a dual-encoder architecture for cross-modal
audio-text retrieval, consisting of separate encoders for audio and
text modalities that are trained jointly using enhanced contrastive
learning.

2.1.1. Audio Encoder

The audio encoder utilizes PaSST (Patch-out Fast Spectrogram
Transformer), a state-of-the-art audio transformer architecture. For
handling variable-length audio inputs, we implement a segment-
based processing approach:

• Long audio files (more than 10s) are split into overlapping 10-
second segments

• Each segment is processed through PaSST with configurable
patch dropout (temporal: 15, frequency: 2)

• Duration-based aggregation combines segment embeddings
using mean pooling

• A linear projection layer maps features to 1024-dimensional
embedding space

The audio processing pipeline includes mel-spectrogram ex-
traction with the following parameters: 128 mel-bands, 32kHz sam-
pling rate, 800-sample window length, and 320-sample hop size.

2.1.2. Text Encoder

The text encoder employs RoBERTa-large for contextual text un-
derstanding:

• Text preprocessing includes lowercase conversion and punctu-
ation removal

• RoBERTa tokenizer with 32-token maximum length handles
variable-length captions

• Contextualized embeddings are extracted from the [CLS] token
representation

• A linear projection layer maps to the same 1024-dimensional
space as audio

Both audio and text embeddings are L2-normalized before sim-
ilarity computation to ensure stable training dynamics.
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2.2. Enhanced Contrastive Learning

2.2.1. Multi-Positive Learning

Traditional contrastive learning treats sample pairs as either positive
(matched) or negative (unmatched). Our multi-positive learning ap-
proach extends this by identifying semantically similar samples as
soft positives:

Lmp = − log

∑
j wij exp(sij/τ)∑

j wij exp(sij/τ) +
∑

k∈N exp(sik/τ)
(1)

where wij represents positive weights (1.0 for hard positives,
0.3 for soft positives), sij is the cosine similarity, τ is the learnable
temperature parameter, and N is the negative set.

Soft positives are identified using intra-modal similarity thresh-
olds (0.75 for text-text and audio-audio similarities), capturing se-
mantic relationships beyond exact matches.

2.2.2. Hard Negative Mining

Hard negative mining focuses training on challenging negative sam-
ples that are most likely to be confused with positives. We imple-
ment three mining strategies:

• Hardest: Select negatives with highest similarity to positives
• Semi-hard: Select negatives within a margin of positive simi-

larity
• Random: Baseline random negative sampling for comparison

The number of hard negatives per positive pair is configurable
(default: 5), with a margin parameter (0.15) controlling semi-hard
selection.

2.2.3. Progressive Training

To prevent optimization interference, advanced techniques are acti-
vated progressively:

• Epochs 0-7: Standard InfoNCE contrastive loss
• Epoch 8+: Multi-positive learning activation
• Epoch 10+: Hard negative mining activation

This staged approach allows the model to learn basic cross-
modal alignments before introducing more sophisticated loss com-
ponents.

3. EXPERIMENTAL SETUP

3.1. Datasets

The primary evaluation dataset is Clotho v2.1, which provides high-
quality audio-caption pairs:

• Training: Development split (3,839 audio files)
• Validation: Validation split (1,045 audio files)
• Testing: Evaluation split (1,045 audio files)

The system supports augmentation with AudioCaps and Wav-
Caps datasets for larger-scale training, though computational con-
straints limited this evaluation to Clotho only.

Table 1: Text-to-audio retrieval performance on Clotho evaluation
set

Metric Performance (%)

R@1 18.68
R@5 44.77
R@10 59.35
mAP@10 30.01
mAP@16 (multiple positives) 34.68

3.2. Training Configuration

Training employed the following configuration:

• Hardware: NVIDIA L4 GPU (24GB memory)
• Batch size: 24 (both training and evaluation)
• Learning rate: Linear warmup (1 epoch) + cosine decay (15

epochs)
• Peak learning rate: 2e-5, minimum: 1e-7
• Mixed precision: 16-bit automatic mixed precision
• Total epochs: 20
• Optimizer: AdamW without weight decay

The learnable temperature parameter was initialized to 0.05 and
remained trainable throughout training.

3.3. Evaluation Metrics

Standard cross-modal retrieval metrics were employed:

• Recall at K (R@1, R@5, R@10): Fraction of queries with rel-
evant item in top-K

• Mean Average Precision at 10 (mAP@10): Average of preci-
sion scores

• mAP@16 with multiple positives: Extended evaluation con-
sidering multiple relevant items per query

4. RESULTS

4.1. Retrieval Performance

Table 1 presents the text-to-audio retrieval performance on the
Clotho evaluation set.

The results demonstrate competitive performance for the en-
hanced contrastive learning approach. The improvement in
mAP@16 over mAP@10 (34.68% vs 30.01%) indicates the sys-
tem’s ability to identify multiple relevant audio files for given text
queries.

4.2. Training Dynamics

The progressive training approach showed stable convergence with
staged activation of advanced techniques. The learnable temper-
ature parameter converged to approximately 0.04, indicating opti-
mal scaling for the similarity matrix. Multi-positive learning activa-
tion at epoch 8 and hard negative mining at epoch 10 demonstrated
smooth integration without training instability.
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5. IMPLEMENTATION DETAILS

The system is implemented using PyTorch Lightning for distributed
training support and includes several engineering optimizations:

• Custom audio loading with efficient 30-second segment extrac-
tion using FFmpeg

• Duration-based audio padding and subsampling for consistent
input shapes

• Custom batch collation for handling variable-length sequences
• Torch.compile() optimization for compatible GPUs (SM 7.0+)
• Comprehensive dataset filtering to exclude corrupted and for-

bidden files

The modular design supports easy extension to additional
datasets and alternative encoder architectures.

6. FUTURE DIRECTIONS AND ONGOING WORK

6.1. Compositional Audio-Text Retrieval Framework

Building upon the enhanced contrastive learning approach pre-
sented in this work, we explored the adaptation of compositional
text-to-image retrieval methodologies for audio-text retrieval tasks.
Inspired by the Cola benchmark framework for compositional un-
derstanding, we investigated a two-stage retrieval mechanism that
leverages both our base contrastive model and multimodal adapter
components.

The proposed compositional framework operates through a hi-
erarchical retrieval pipeline:

• Stage 1 - Semantic Retrieval: The base model with multi-
positive learning and hard negative mining generates initial
candidate rankings based on learned audio-text embeddings

• Stage 2 - Compositional Reranking: A multimodal adapter
performs fine-grained reranking of top-N candidates, focusing
on compositional understanding of complex audio scene de-
scriptions

This approach aims to address limitations in current audio-text
retrieval systems when handling compositional queries that describe
multiple sound sources, temporal relationships, or complex acous-
tic scenes. The multimodal adapter, implemented as a transformer-
based cross-attention mechanism, was designed to capture fine-
grained correspondences between textual compositional elements
and audio spectral-temporal patterns.

6.1.1. Implementation Strategy

The compositional framework builds upon our validated base archi-
tecture by introducing a specialized reranking module. The base
model, trained with enhanced contrastive learning techniques de-
scribed in Section 2.2, provides robust initial retrieval performance.
The multimodal adapter then refines these predictions by analyzing
compositional relationships within the top-50 retrieved candidates.

Initial experiments demonstrated promising directions for im-
proved handling of complex audio scene descriptions. However, the
full implementation and evaluation of this compositional framework
remains incomplete due to computational constraints and project
timeline limitations.

6.1.2. Expected Contributions

The completed compositional framework is expected to provide
several key improvements:

• Enhanced retrieval accuracy for complex, multi-element audio
scene descriptions

• Better handling of temporal and spatial relationships in audio-
text correspondences

• Improved generalization to compositional queries not seen dur-
ing training

• Systematic evaluation methodology for compositional audio-
text understanding

This work represents a natural extension of the current approach
and will be pursued in future research to advance the state-of-the-art
in compositional audio-text retrieval.

7. CONCLUSION

This work presents an enhanced audio-text retrieval system featur-
ing multi-positive learning and hard negative mining within a pro-
gressive training framework. The approach demonstrates compet-
itive performance on the Clotho dataset while providing a flexible
foundation for cross-modal retrieval research.

Key contributions include the systematic integration of
advanced contrastive learning techniques, progressive training
methodology, and comprehensive evaluation framework. The
staged activation approach successfully prevents optimization in-
terference while enabling sophisticated loss formulations.

Future work directions include scaling to larger multi-dataset
training, exploring alternative mining strategies, and investigating
attention-based cross-modal fusion mechanisms. The open-source
implementation facilitates reproducibility and further research in
cross-modal retrieval.
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