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ABSTRACT

In this paper, we investigate sparse convolutive non-negative ma-
trix factorization (sparse-CNMF) for detecting overlapping acoustic
events in single-channel audio, within the experimental framework
of Task 2 of the DCASE’16 Challenge. In particular, our main focus
lies on the efficient creation of the dictionary, as well as the detec-
tion scheme associated with the CNMF approach. Specifically, for
the dictionary creation stage, we propose a shift-invariant method
for its size reduction that outperforms standard CNMF-based dictio-
nary building. Further, for detection, we develop a novel algorithm
that combines information from the CNMF activation matrix and
atom-based reconstruction residuals, achieving significant improve-
ments over conventional detection based on activations alone. The
resulting system, assisted by efficient background noise modeling,
outperforms a traditional NMF baseline provided by the Challenge
organizers, achieving a 24% relative reduction in the total error rate
metric on the Challenge Task 2 test set.

Index Terms— Convolutive Non-Negative Matrix Factoriza-
tion, Dictionary Building, Overlapping Acoustic Event Detection

1. INTRODUCTION

Acoustic event detection (AED) is a research topic that has attracted
significant interest in the literature. Its main goal is the end-pointing
and classification of each event present in an audio recording. In its
general form, multiple acoustic events may occur simultaneously,
making the task extremely challenging. Application areas of AED
include, among others, smart home environments, surveillance and
security, as well as multimedia database retrieval.

In the case of isolated AED, conventional detection and classi-
fication approaches, such as ones based on hidden Markov models
(HMMs) in conjunction with traditional audio features (for example
MFCCs) achieve satisfactory performance [1]. In the case of over-
lapping AED however, such methods need to be modified in order
to allow multiple event detection. For example, in [2], multiple-path
Viterbi decoding is employed to deal with the overlapping scenario.
Other works for overlapping AED include multi-label deep neural
networks [3], temporally-constrained probabilistic component anal-
ysis models [4], generalized Hough-transform based systems [5],
and non-negative matrix factorization (NMF) [6].

Among these, NMF-based approaches and their variants have
begun to attract interest in the field of both isolated and overlapping
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AED in recent years. This is due to both their robustness and their
natural ability to detect multiple events occurring simultaneously,
as long as appropriate non-negative and linear representations of
them are available. For example, in [7], a rather small dictionary of
events is automatically built using sparse-CNMF, and subsequently
the activations produced are used as input for HMM training for
each class. Also, in [6], using a large dictionary, NMF activations
are directly exploited to perform detection for each event class.

In this paper, overlapping AED is performed on the Task 2
dataset of the DCASE’16 Challenge [8], consisting of single-
channel audio that contains eleven office-related events syntheti-
cally mixed in various conditions. The detection system proposed
is based on the sparse-CNMF framework: Given a dictionary with
spectral patches (“atoms”) for each class (acoustic event), it deter-
mines the activations of each atom over time, thus allowing detec-
tion of overlapping events. The main contributions of the work lie in
the investigation of methods for efficient dictionary building and in
the design of a novel method for the final detection step. In particu-
lar, an efficient dictionary selection method based on shift-invariant
similarity between atoms is proposed, achieving improved results
compared to the standard automatic dictionary building of sparse-
CNMF. Also, in the final detection step, a combination of activa-
tions with the reconstruction errors for each class is proposed. The
approach yields significant improvements over conventional detec-
tion employing activations alone, indicating the complementary in-
formation contained in the reconstruction errors.

The remainder of the paper is organized as follows: Section 2
overviews the sparse-CNMF framework; Section 3 presents dic-
tionary building for CNMF, including the proposed shift-invariant
size reduction approach; Section 4 covers the CNMF detection ap-
proaches considered; Section 5 discusses additional system compo-
nents, such as background noise modeling, feature extraction, and
post-processing; Section 6 reviews the experimental framework and
reports our results; and, finally, Section 7 concludes the paper.

2. SPARSE-CNMF FOR AED

The application of sparse-CNMF for overlapping AED is based
on the idea of linear decomposition of events into spectral patches
(“atoms”). Given the linearity of the features employed, mixtures
of events will be mainly decomposed into atoms from the mixed
classes, therefore indicating their presence. To accomplish this,
non-negative features with approximate linearity are required: spec-
trograms and filterbank energies are typically used for this purpose.

NMF is a linear non-negative approximate factorization of the
observed feature matrix. CNMF [9] is its convolutive extension, and
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it is formulated as follows: Given a non-negative data feature matrix
V∈ <≥ 0,M×N, where M denotes the feature vector size and N the
available number of feature vectors, the goal is to approximate V by
matrix Λ, derived as a temporal convolutive sum of a “dictionary”
and “activations”, namely

V ≈ Λ =

T−1X
t = 0

Wt ·
t→
H , (1)

where, operator
t→• shifts the columns of its matrix argument t

places to the right, Wt ∈ <≥ 0,M×R denotes the non-negative dic-
tionary matrix at time step t , H ∈ <≥ 0,R×N represents the non-
negative activation matrix, T is the number of time frames spanned
by each dictionary atom, and R stands for the number of atoms in
the dictionary. The i-th column of Wt describes the i-th atom, t
time steps after its beginning. The dictionary thus contains R atoms
of size M× T each. Minimization of a suitable error cost function
D(V||Λ) results in the iterative estimation of Wt and H [9, 10].

For detection, assuming a given dictionary Wt , t ∈ [ 0 , T−1 ] ,
that contains atoms of the various classes of interest, the esti-
mated H provides the activations of each class through time. Al-
though CNMF produces activation patterns that tend to be sparse,
in detection-related tasks sparsity of H becomes crucial. To achieve
it, sparse-CNMF, a variant of CNMF, is often used, minimizing the
following objective,

G (V ||Λ) = D (V ||Λ) + λ ‖H‖1 , (2)

with parameter λ controlling the trade-off between sparseness on
H and accurate reconstruction of V by Λ . Depending on the
cost function selected (KL-divergence, Euclidean distance), differ-
ent updating equations result [11, 12].

3. DICTIONARY BUILDING

Dictionary building is a very important step in exemplar-based
methods. Representative atoms from each class must be contained
in the dictionary matrix, capable of reconstructing unseen data. Us-
ing training data consisting of isolated event instances, a sufficient
number of atoms is extracted and stored in the dictionary for each
class of interest, resulting to matrices

Wt = [W
(1)
t , . . . ,W

(C)
t ] , t ∈ [ 0 , T−1 ] , (3)

where C is the number of classes. In the case of CNMF-based
methods, due to increased computational complexity, we need to
create a rather compact dictionary. In the following, we present two
alternatives for this task.

3.1. CNMF-based

For each class of interest, the training instances are concatenated
to form its data matrix, V(i). Then, via sparse-CNMF, matrices
W

(i)
t and H(i) are computed (as in [12]), and W

(i)
t ∈<≥ 0,M×Ri

stored in the dictionary. The duration, T , of each atom and their
total number, R i , are predefined. By extracting the same number
of atoms for each class, their total number becomes R = C ·R i .

3.2. Shift-invariant dictionary reduction

Here, we propose an alternative way for dictionary creation that
selects a group of atoms from the original training data. For each
class, first, a large number of atoms is extracted from its data matrix

V(i), using a sliding window of duration T (shifted by one feature
frame at a time). Then, only R i of them are selected by “uniformly
sampling” the set of the resulting atoms, as explained next. The
process aims at selecting different types of existing atoms based
on a similarity measure, appropriate for CNMF. In our case, such
similarity should be shift-invariant: i.e., two atoms are considered
similar if the Euclidean distance between them, or between their
temporally shifted versions, is small.

To achieve atom comparisons in a shift-invariant way, we first
rearrange them into vectors of size M ·T , in a row-wise manner.
This way, a time-shift of atoms results to shifts of their correspond-
ing vectors. Then, atom similarity is measured as the Euclidean
distance between the magnitudes of the Fourier transforms (DFTs)
of the rearranged vectors, based on the well-known shift-invariant
property of this transform. The available atoms are thus mapped
to their Fourier-magnitude vectors, which are subsequently sorted
based on their Euclidean distance from their mean. Finally, R i

atoms are selected by uniformly sampling the resulting sorted list.
The adopted sampling scheme represents a simple approach to

desired dictionary size reduction. Alternatively, well-known clus-
tering methods like k-means could also be used for the task.

4. DETECTION APPROACHES

As stated earlier, having created the dictionary matrix Wt , sparse-
CNMF accepts as input the data matrix V, and outputs the desired
activation matrix H (following the approach in [11]). The final
event detection can occur by exploiting the information in the above
matrices. We present two main approaches for accomplishing this.

4.1. Using activations only

Most of NMF-based approaches employ the information in H di-
rectly [6], or indirectly [7]. In our method, activations in H are
directly used for detecting possible events. In particular, for each
class, the activations are summed across all their atoms, for each
frame, resulting in a new matrix H′∈<≥ 0,C×N, with elements

H ′( i , n ) =
X

r ∈{i}

H( r , n ) , (4)

where i denotes the class ( i = 1,· · ·, C ), {i} the set of row indices
in H that correspond to the i-th event atoms, and n ∈ {1,· · ·, N}
the time frame. Then, at time n , a class is considered active if
H ′(i,n) > θH , where θH is a suitably chosen activation thresh-
old. A post-processing step can also be employed to yield smooth
activations. Finally, as activation refers to atoms, T− 1 additional
frames following the detected activations are considered active.

4.2. Incorporating reconstruction residuals

An alternative method to the above decides for an event activa-
tion, not by thresholding the elements of H′, but by measuring
KL-divergence between V and Λ , when only the atoms of the
event in question and of background noise are used in reconstruction
(see Section 5.1 for details on background noise modeling). More
specifically, the total reconstruction error of sparse-CNMF over
a time-segment, seg , under consideration, is D (Vseg ||Λseg ) ,
whereas reconstruction error on basis of only the i-th event and
noise is D (Vseg ||Λ(i,bg)

seg ) , where,

Λ(i,bg)
seg =

T−1X
t = 0

W
(i,bg)
t ·

t→

H(i,bg)
seg , (5)
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Figure 1: An example of applying the long-term signal variability
(LTSV) measure to background noise detection (see Section 5.1).
Ground truth peaks correspond to acoustic events.

with H
(i,bg)
seg denoting the part of H that contains only rows cor-

responding to atoms of the i-th class or background noise and
columns that correspond to the time frames of seg . Similarly, in
the above, Λseg and Vseg contain the columns of (1) and of the
data matrix, respectively, within the segment under consideration.

We define the “residual ratio” of the i-th event as the ratio be-
tween the residual on basis of (5) to the total one, using (1), namely

E(i , n) =
D (Vseg ||Λ(i,bg)

seg )

D (Vseg ||Λseg)
, for all n ∈ seg . (6)

In computing (6), non-overlapping segments of 1 sec. in duration
are used. Small residual ratio values for the i-th event in a given
segment means that large percentage of the reconstruction in that
segment is achieved using only the i-th event (together with back-
ground noise). Activations in H′ with large magnitude are also of-
ten related with large percentage of reconstruction, but this is not
always the case. From the minimization of (2), large magnitude ac-
tivations may occur for a given event and a given time frame, but
with a small corresponding reconstruction contribution.

In our first approach using activations only, the event detec-
tion criterion is the activation matrix H element magnitudes. In
the residuals-based approach, instead, the criterion is the accuracy
of reconstruction using only atoms and activations of a particular
event. In our final system, submitted to the Challenge, we combine
both. Thus, the i-th event is considered active at time frame n, if

H ′(i , n) > θH and E(i , n) < θE . (7)

Thresholds θH and θE are chosen as explained in Section 5.2.

5. SYSTEM IMPLEMENTATION DETAILS

5.1. Background noise modeling

In addition to modeling the acoustic events by incorporating rep-
resentative atoms in the dictionary, background noise modeling is
necessary for robust AED. With the presence of background noise
atoms in the dictionary, false alarm event activations are avoided in
areas that events are not present. Also, more reliable reconstruction
is possible in active areas, assuming additive noise.

In our approach, and following work in [6], we extract the
background noise atoms from the observed data during decoding
(on-the-fly). The advantage of this scheme is the adaptation of the
background dictionary to slightly different conditions, possibly ex-
isting each time. However, instead of assuming background noise
present at the beginning and end of the observed data, as in [6], we
attempt to extract background atoms from various areas of the sig-
nal, by employing the long-term signal variability (LTSV) measure,

described in [13]. This measure has been successfully used in voice
activity detection, and it is based on the fact that background noise
usually exhibits smaller variability through time in its spectrum.

In our system, a frame is considered as noise if its LTSV value
is lower than a fixed threshold, θL . As before, the shift-invariant
dictionary reduction method is applied to areas that noise is de-
tected to help provide background noise atoms. An example of the
LTSV based approach is shown in Figure 1, where LTSV values for
a Challenge corpus signal are depicted, together with ground-truth
locations of acoustic events. As it can be seen, LTSV values and the
chosen θL ensure that acoustic event time frames are avoided.

5.2. Features, system parameters, and post-processing

We now provide some additional details of our implemented sys-
tem. Concerning audio feature extraction, we have experimented
with various feature sets that satisfy non-negativity and approximate
linearity: Mel-filterbank energies, Gammatone-filterbank energies,
DFT spectrogram, and the variable Q-Transform (VQT). The first
three are computed using 30 msec long frames with a 10 msec shift,
whereas VQT is obtained from the baseline system of [8]. Our fi-
nal submitted system uses 150-dimensional Mel-filterbank energy
features (M= 150).

Regarding dictionary building, atoms of 200 msec (T = 17
frames) in duration are used, and for the CNMF-framework, pa-
rameter λ in (2) is set to 0.7. Further, approximately 200 atoms per
event class are used (Ri≈ 200), with R≈ 2.4k total atoms (includ-
ing background noise modeling).

Concerning the various thresholds employed, θH in (7) is com-
puted as a percentage (15%) of the maximum value of matrix H′

elements. Threshold θE in (7) is computed as a percentage (106%)
of the minimum of E(i , n) for a given segment. Such values are
optimized on available development data (see Section 6.1).

Finally, as a post-processing stage in the detection system, one-
dimensional dilation is performed on each row of matrix H′, in
order to broaden the intervals of high-peaked activations produced.
In the case of the combined method, dilation is performed before
the combination with the residuals approach. At the end, T − 1
frames after each detected activation are also considered as active.

6. EXPERIMENTS

6.1. Database

We perform experiments on the DCASE’16 Challenge database de-
signed for Task 2 – “Sound event detection in synthetic audio” [8].
The corpus contains recordings of eleven office-related acoustic
events (see also Figure 2), consisting of three parts: The training set
with 20 isolated recordings of each event; a development set with
18 two-minute long recordings of synthetic mixtures of audio events
and noise at various SNRs and event overlap conditions (“density”
and “polyphony”); and a test set of similar structure to the devel-
opment set (54 recordings), only used in the Challenge evaluation,
with its ground-truth publicly unavailable at the moment.

6.2. Experimental setup

In this paper, we report experiments on both the development and
test sets (the latter as only provided by the Challenge organizers).
Specifically, for the development set, due to its particularity of con-
taining the same event instances as the training set, we use two dif-
ferent setups, described next.
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Table 1: Performance of baseline and proposed systems on 3 sets.

system setup #1 setup #2 test
Fscore ER Fscore ER Fscore ER

NMF-baseline 0.42 0.79 0.32 0.87 0.37 0.89
activations-only 0.83 0.30 0.43 0.79 --- ---
activations&residuals 0.84 0.29 0.55 0.63 0.56 0.68

Table 2: Performance of different feature sets and dictionary sizes.

features feat. dict. setup #1 setup #2
dim. size Fscore ER Fscore ER

VQT 545 200 0.79 0.37 0.29 0.88
Gamma 150 200 0.82 0.33 0.35 0.86

Mel 150 200 0.83 0.30 0.43 0.79
Mel 150 100 0.81 0.36 0.42 0.85
Mel 100 100 0.83 0.30 0.42 0.82
DFT 545 100 0.78 0.42 0.41 0.83

Table 3: Performance of different dictionary building methods.
dictionary setup #1 setup #2

building method Fscore ER Fscore ER
sparse-CNMF 0.64 0.60 0.29 0.89

shift-invariant reduction 0.83 0.30 0.42 0.82

• Setup #1: This is identical to the default setup of Task 2. One
dictionary is built using all isolated training data, and then AED
is performed on all 18 development set recordings.

• Setup #2: Here, to allow testing on unseen event instances, we
perform a 18-leave-one-out experiment. In total, 18 dictionar-
ies are built, each tested on a single development set recording,
by using each time all available training set instances, except
those contained in the particular development set recording.

6.3. Metrics

We report results employing the adopted Challenge metrics [8],
namely frame-based Fscore and frame-based total error rate (ER).
The latter is defined as ER =(I + D + S)/N , where I denotes
acoustic event insertions, D deletions, S substitutions, and N the
total number of ground-truth events at a given frame. ER is com-
puted in frames of 1 sec. in length.

6.4. Results

In Table 1, the results using the Challenge-provided NMF baseline,
our submitted system, and a variant of it are compared for the differ-
ent experimental setups considered. Regarding the NMF-baseline,
it builds the dictionary using the training data, and extracts 20 atoms
per class. Atoms have single-frame duration, and are extracted from
the variable-Q transform spectrogram (VQT, 60 bins, 10 msec step).
A post-processing stage applies median filtering to the output and
allows up to five concurrent events [8].

Both our systems, depicted in Table 1, perform dictionary cre-
ation employing the shift-invariant reduction approach, and their
details are provided in Section 5.2. It is obvious that both outper-
form the baseline in all setups. In particular, our submitted system
(“activations & residuals”) achieves 63.3%, 27.6%, and 23.6% rel-
ative reduction in ER over the baseline for setup #1, #2, and the
test set, respectively. It seems that the extraction of more atoms per
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Figure 2: AED on the “dev 1 ebr 6 nec 3 poly 0.wav” Challenge
recording: (a) ground-truth; (b) output of our submitted system.
Acoustic event labels are also shown.

class (almost ten-fold over the baseline), combined with the incor-
poration of temporal structure under the CNMF-framework, lead to
major improvements.

Comparing our two detection approaches, we can observe that
the system using the combination of activations and reconstruction
residuals (submitted to the Challenge) achieves a 20% ER relative
reduction in setup #2, compared to the system using activations
only. This highlights the complementarity of the two methods. The
improvement is mainly due to the elimination of false activations,
exhibiting large peaks in H′ but also having a large residual ratio.

In Table 2, we show experimentation regarding different audio
feature sets, together with variations in their dimensionality and dic-
tionary size (number of atoms per class is depicted). We can observe
that Mel-filterbank energies achieve the best performance among
the different sets considered. It thus seems that they are more ap-
propriate for the set of acoustic events considered in the Challenge.
Also from the Mel feature results (150-dimensional), we can ob-
serve that increasing dictionary size leads to slight improvements.

A comparison of the different dictionary building methods is
shown in Table 3, using the same detection system in both cases
(a 100-dimensional Mel-filterbank, activations-only system, with
100 atoms per class). Clearly, the shift-invariant dictionary size
reduction approach outperforms conventional CNMF-based dictio-
nary building. This provides evidence that accurate representation
of event atoms (instead of approximate) is beneficial to detection,
as long as we have a way to select appropriate atoms.

Finally, in Figure 2, the output of our system is shown against
ground-truth for a particular audio recording of the development set.

7. CONCLUSIONS

We presented a sparse-CNMF based system for overlapping audio
event detection, employing an efficient dictionary building method
and a novel detection approach. Attention was also given to back-
ground noise modeling and on experimentation with different pos-
sible feature sets for the CNMF framework. Results obtained on
Task 2 of the DCASE’16 Challenge were promising, significantly
outperforming the NMF-baseline provided.

In future work, better ways to combine activation-based and
residual-based approaches will be investigated. Also the perfor-
mance of our system will be tested in more datasets relevant to
overlapping acoustic event detection.
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