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ABSTRACT
This paper proposes an acoustic event detection (AED) method us-
ing semi-supervised non-negative matrix factorization (NMF) with
a mixture of local dictionaries (MLD). The proposed method based
on semi-supervised NMF newly introduces a noise dictionary and a
noise activation matrix both dedicated to unknown acoustic atoms
which are not included in the MLD. Because unknown acoustic
atoms are better modeled by the new noise dictionary learned upon
classification and the new activation matrix, the proposed method
provides a higher classification performance for event classes mod-
eled by the MLD when a signal to be classified is contaminated
by unknown acoustic atoms. Evaluation results using DCASE2016
task 2 Dataset show that F-measure by the proposed method with
semi-supervised NMF is improved by as much as 11.1% compared
to that by the conventional method with supervised NMF.

Index Terms— Acoustic event detection, Non-negative matrix
factorization, Semi-supervised NMF, Mixture of local dictionaries

1. INTRODUCTION

To identify a physical event or a sound source by which an observed
acoustic signal has been produced, acoustic event detection (AED)
is studied in various research fields such as smart home systems
[1, 2], environmental and ecological surveillance [3, 4], and au-
dio and video indexing [5, 6, 7]. Particularly, to make cities safer,
AED as part of a monitoring system is expected to find hazardous
sounds related to crimes, accidents, and incidents in public spaces
[8, 9]. Environmental sound coexisting with a target acoustic signal
causes wrong feature extraction and results in failure of detection.
AED methods based on non-negative matrix factorization (NMF)
have been proposed as promissing solutions [10, 11, 12, 13]. For
AED, NMF models an acoustic event as a combination of acous-
tic atoms which constitutes spectra of acoustic events. NMF-based
methods learn a dictionary of acoustic atoms by decomposing train-
ing signals into their spectral bases. A signal to be classified is
decomposed into bases of the dictionary and the corresponding ac-
tivation matrix by supervised NMF. The extracted activation matrix
represents a mixture ratio of acoustic atoms in the signal and is used
as a feature vector.

One of the most important points for an NMF-based AED
method is how to learn a dictionary of acoustic atoms. Gem-
meke et al. [14] made a dictionary by concatenating event spe-
cific basis matrices which were extracted by performing NMF on
each acoustic event individually. However, when different acous-
tic events share the same acoustic atoms, the dictionary becomes
redundant. This redundancy prevents proper extraction of an acti-
vation matrix. Komatsu et al. [15] used a mixture of local dictio-
naries (MLD) [16] constituting sub-groups of bases which directly
models acoustic atoms. The MLD is learned with constrained NMF
using a prior knowledge of acoustic atoms, which is obtained from
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Figure 1: Block diagram of the proposed acoustic event detec-
tion.The supervised NMF is a special case of semi supervised NMF
without a noise dictionary Wn and a noise activation matrix Hn.

clustered spectra of training signals. Modeling acoustic atoms di-
rectly by sub-groups of basis, the MLD has less redundancy and
performs more accurate feature extraction. However, the conven-
tional method performs supervised NMF [17, 18] using their fixed
dictionaries upon classification. When a signal to be classified has
unknown spectra (e.g. environmental sound) which are not included
in training signals, the unknown spectra are expressed by acoustic
atoms in the training signals. The extracted activation matrix is con-
taminated by unknown spectra and leads to failure of detection.

This paper proposes an AED method using semi-supervised
NMF with the MLD. The proposed method based on semi-
supervised NMF newly introduces a noise dictionary and a noise
activation matrix both dedicated to unknown acoustic atoms which
are not included in training data. Because unknown acoustic atoms
are better modeled by the new noise dictionary learned upon clas-
sification and the new activation matrix, the proposed method pro-
vides a higher classification capability for event classes modeled by
MLD when a signal to be classified are contaminated by unknown
acoustic atoms.
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Figure 2: Relationship among training/test spectrum, the MLD, and
the noise dictionary

2. PROPOSED METHOD

Figure 1 shows a block diagram of the proposed method. It con-
sists of three parts, dictionary learning, classifier training, and event
classification. Acoustic signals are used after being transformed to
spectrograms.

In dictionary learning, the training spectrogram V is decom-
posed into an initial basis matrix W0 by basic un-supervised NMF
[19]. Next, K-means clustering is applied to W0, and G centroids
µ(g) are obtained where g ∈ {1, ..., G} denotes an index of cen-
troid. A MLD W is learned by constrained NMF using µ(g) as
prior knowledge.

In classifier training, an event-specific activation matrix H(i) is
extracted from the corresponding spectrogram V(i) with supervised
NMF using the MLD W where i denotes an index of each acoustic
event class. Column vectors of H(i) at each time frame are used as
feature vectors for training the classifier.

In event classification, unlike classifier training, semi-
supervised NMF is applied to a test spectrogram V(∗) with the
MLD W and a noise dictionary Wn which is learned from V(∗).
Wn and [H(∗),Hn] which are activation matrices of the MLD and
the noise dictionary are alternately updated. Unknown spectra in-
cluded in V(∗) are expressed by Wn and Hn, so that H(∗) is ex-
tracted properly. The classifier uses only H(∗) as a feature vector
for classification of acoustic event classes.

2.1. Dictionary learning

MLD consists of G sub-groups of bases which model acoustic
atoms W = [W(1), ...,W(G)]. A basis matrix W(g) ∈ RF×Kg

+

consists of Kg basis vectors where RF×Kg

+ , F , and g denote a set
of non-negative F × Kg matrices, the number of frequency bins,
and an index of each acoustic atom.

To determine acoustic atoms, an initial basis matrix W0 is first
extracted from the entire training data spectrogram V ∈ RF×T

+

with the basic un-supervised NMF where T denotes its number of
time frames. K-means clustering is then applied to bases in W0 to
select G centroids µ(g) which represent centroids of acoustic atoms.

NMF is again applied to V with the centroids µ(g) and the follow-
ing cost function D (V|Λ):

D (V|Λ) = DKL(V|Λ)

+ η
∑
g

DKL(µ
(g)|W(g)) + λ

∑
t

Ω(ht), (1)

where Λ = WH is approximation of V and H is an activation
matrix of MLD W. A column vector ht of H at time frame t
consists of activations h(g)

t for W(g) (g = 1,...,G),

H = [h1, ...,ht, ...,hT ], (2)
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where [·]> denotes a matrix transpose.
Cost function in (2) consists of three terms; a generalized

Kullback-Leibler(KL) divergence DKL (V|Λ) between V and Λ,
a constraint

∑
g DKL(µ

(g)|W(g)), and a group sparsity constraint∑
t Ω(ht). The first term is a generalized KL divergence used by

the basic un-supervised NMF algorithm. The second term is a con-
straint which allocates sub-groups of bases W(g) to g th acoustic
atoms characterized by the centroid µ(g). The strength of constraint
is controlled by η. The third term represents group sparsity con-
straint at time t controlled by λ, where

Ω(ht) =
∑
g

log(ε+ ‖h(g)
t ‖1) (4)

is used in prior arts [16, 20] to turn off activation of the irrelevant
acoustic atoms.

To minimize the cost function in (2), the following update rules
are iteratively applied:

W(g) ←W(g) �
{(

V

Λ

)
H> + η

µ(g)

W(g)

}/{
1
(
H> + η

)}
,

(5)

H← H�
{
W>

(
V

Λ

)}/{
W>1

}
, (6)

h
(g)
t ← h

(g)
t

1

1 + λ
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ε+ ||h(g)
t ||1

} (7)

where 1 is a matrix with all elements equal to 1 and with a dimen-
sion of V. A � B represents element wise multiplication, A

/
B

and A
B

represent element wise division. The procedure of dictio-
nary learning is shown in Algorithm 1.

Algorithm 1 Dictionary learning for MLD
1: INPUT: V
2: Obtain W0 by a basic NMF
3: Obtain µ(g) by using K-means to W0

4: Initialize W and H with random values.
5: repeat
6: Update W using (5).
7: Update H using (6) and (7).
8: until Convergence
9: OUTPUT: W
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2.2. Classifier training

In classifier training, an activation matrix H(i) is extracted from the
corresponding training spectrogram V(i) by supervised NMF with
MLD W and a classifier is trained using the activation matrices
where i ∈ {1, ..., I} represents an event-class index. In supervised
NMF, V(i) is approximated by a product of W and H(i),

V(i) ∼WH(i). (8)

For a given W by dictionary learning, H(i) is updated using (6)
and the group sparsity constraint in (7). The procedure is shown in
Algorithm 2.

Once H(i) has been obtained, column vectors ht(i) of H(i) at
each time frame t are used as feature vectors to train the classi-
fier. Simple linear support vector machine(SVM) [21] is used for
classifier. Multi-class SVM is trained based on the one-against-all
approach.

Algorithm 2 Feature extraction with supervised NMF
1: INPUT: V(i) and W
2: Initialize H(i) with random values.
3: repeat
4: Update H(i) using (6) and (7). with fixed W
5: until Convergence
6: OUTPUT: H(i)

2.3. Event classification

In event classification, the proposed method extracts an activation
matrix from a test spectrogram using semi-supervised NMF with
MLD. A noise dictionary is learned concurrently with extracing the
activation matrix. Unknown spectra included in a test spectrogram
is expressed by the noise dictionary and the corresponding activa-
tion matrix, so that an activation matrix of acoustic atoms are ex-
tracted properly.

Let V(∗) and Wn ∈ RF×Kn
+ denote the test spectrogram and

the noise dictionary, respectively, where Kn is the number of bases
in the noise dictionary. H(∗) and Hn denote activation matrices of
MLD and Wn, respectively. The relationship among these matrices
is described as in the following approximation:

V(∗) ∼ Λ(∗) = [W,Wn]

[
H(∗)
Hn

]
. (9)

In semi-supervised NMF, H(∗), Hn and Wn are updated to mini-
mize a generalized KL divergence DKL

(
V(∗)|Λ(∗)

)
, applying an

update rule for the activation matrix in (6), a group sparsity con-
straint in (7) and the following update rule for Wn:

Wn ←Wn �
{(

V(∗)

Λ(∗)

)
H>

n

}/{
1H>

n

}
. (10)

The procedure is shown in Algorithm 3.
Figure 2 is a simple illustration of the relationship among train-

ing/test spectrum, MLD, and the noise dictionary. The relationship
is explained as data points on the 3-dimentional simplex [22, 23].
© and F represent training and test spectrum, respectively, ♦ and
4 represent bases and centroids of MLD, respectively. In dictionary
learning, sub-groups of bases ♦ in MLD are learned to span convex
hulls enclosing training spectra©. In event classification, the noise
dictionary is learned from unknown test spectra F lying outside the
convex hulls which is indicated with the shaded area. Therefore un-
known spectra included in the test spectrogram are expressed by the

noise dictionary and MLD can extract a proper activation matrix of
acoustic atoms.

After extracting H(∗) , the classifier receives H(∗) as a feature
and outputs a T × I binary classification-result matrix R, where I
represents the number of event classes for classification. A binary
column vector of R per frame corresponds to the presence of each
event class. When a column of R contains two non-zero elements
for example, there are two detected events in that frame. A non-
zero and a zero column vector stand for event-detected and event-
undetected status, respectively.

Algorithm 3 Feature extraction with semi-supervised NMF
1: INPUT: V(∗) and W
2: Initialize Wn, H(∗) and Hn with random values.
3: repeat
4: Update Wn using (10)
5: Update H(∗) and Hn using (6) and (7).
6: until Convergence
7: OUTPUT: H(∗)

3. ADDITIONAL PROCESSING SPECIFIC TO
EVALUATION

DCASE 2016 task 2 Dataset is used for evaluating the proposed
method. The Dataset includes 11 sound classes, which are typically
found in the office and shown on the left side of Figure 4. The task
2 has two types of dataset; Training Dataset used for generating
MLD and training SVM classifiers, and Development Dataset used
for classification.

Training Dataset consists of 20 noise-free files for each sound
class totaling 220 files. Development Dataset includes 18 files to
cover 6 event occurrence patterns and three SNRs, namely, −6, 0,
and 6 dB, each of which contains all 11 sound classes. Develop-
ment Dataset also has an annotation file for each sound data file to
evaluate classification result.

Because DCASE 2016 task 2 Dataset is used for evaluation with
the annotation file and classification results, each classification re-
sult needs to be expressed in the format of the annotation file, which
is defined as columns of sound class name, onset time, and offset
time. The classification-result matrix R is applied a median fil-
ter in a row-wise manner. Columns of R are further replaced with
zero column vectors when the corresponding frame is determined
as silent by an integrated spectral intensity (ISI) or as a gap shorter
than 0.1 second (10 frames). Values of F-measure are calculated by
sed eval tools [24] for evaluation on segment based metrics over 1
second for each SNR and each event.

4. EVALUATION AND DISCUSSION

Table 1 shows a parameter setting used in the evaluation. For gener-
ating spectrograms from sound files, a variable q transform (VQT)
[25] was used. VQT spectrograms were extracted for all files of
DCASE task 2 Dataset. MLD was generated from the obtained
VQT spectrograms. The number of bases in the noise dictionary
for semi-supervised NMF was set to the one with the best perfor-
mance for each event class.

Figure 3 compares F-measure values calculated by the conven-
tional AED with supervised NMF[15] and the proposed AED with
semi-supervised NMF for different SNRs. The F-measures by the
proposed method are 4.7%, 7.7%, and 11.1% higher than those by
the conventional method at SNRs of 6, 0, and −6 dB, respectively.
The degradation of F-measure from 6 to 0 dB is 2.0% and that from
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Figure 3: Evaluation results for all event classes at three different
SNRs using DCASE2016 task 2 Dataset.

Table 1: Parameter setting for the evaluation.
Parameter value
Sampling rate 44.1 kHz
Fmin for VQT 27.5 Hz
Number of bins per octave for VQT 60
γ for VQT 30.0
Number of basis for MLD 46
Number of group basis for MLD 4

6 to −6 dB is 13.9% for the proposed method. These values are
smaller than those for the conventional method.

Conventionally, the input spectrogram including the noise is
modeled by fixed MLD, which is learned without noise, and the
activation matrix of MLD, so that the activation matrix of MLD
includes errors. The proposed method dedicates both a noise dic-
tionary and its activation matrix to the noise. Because noise spectra
are better modeled by the noise dictionary learned upon classifi-
cation and its activation matrix, the proposed method provides a
higher F-measure values than conventional method at each SNR,
when known acoustic atoms in the learning data are contaminated
by noise in event classification. Therefore, the proposed method is
robust to the noise.

Results for each event class are compared in Figure 4. It
shows big improvement for cough and page turn. Especially, the
F-measure of page turn is improved by 24.4%. The F-measure
for clear throat, keyboard, keys, laughter, phone, and speech show
small improvement. Door slam, drawer, and knock did not im-
prove at all. The proposed method generally provides better re-
sults than the conventional method for each event class, because the
conventional method is a special case of the proposed method with
no noise dictionary and no noise activation matrix. The effect of
the proposed method changes according to similarities between an
event-class spectrum and an unknown noise spectrum. It seems that
an event class with big improvement by the proposed method has
MLD that can be easily activated by the noise spectrum. The pro-
posed method reduces such erroneous activation with a help of the
noise dictionary. In contrast, when the spectrum of an event class
are clearly different from the noise spectrum, the proposed method
is not as effective as for the similar spectrum case. Further investi-
gation is left for future study.
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Figure 4: Evaluation results for each acoustic event of DCASE2016
task 2 Dataset.

Table 2: DCASE 2016 Challenge results.
Error rate F-measure

Development dataset 0.27 86.7 %
Evaluation dataset 0.33 80.2 %

5. DCASE 2016 CHALLENGE

Table 2 shows segment-based overall results of our sysmtem. To ob-
tain better performance for DCASE 2016 Challenge, we addition-
ally incorporate noise suppression [26] for test spectrogram V(∗)
as preprocessing to suppress stationary noise in V(∗). Parameters
of the proposed method are optimized for the development dataset.
In particular, event classes have their respective optimal number of
bases in the noise dictionary for semi-supervised NMF. Therefore,
for detection of each event class, the corresponding optimal num-
bers of bases are used ; 1 for cough, doorslam, pageturn, and phone,
2 for clearthroat, 3 for drawer and keyboard, 4 for keys, and 10 for
knock, laughter, and speech.

6. CONCLUSIONS

An acoustic event detection (AED) method using semi-supervised
non-negative matrix factorization (NMF) with mixture of local dic-
tionaries (MLD) has been proposed. The proposed method has
newly introduced a noise dictionary and a noise activation matrix
both dedicated to unknown acoustic atoms which are not included
in the learning data. Because unknown acoustic atoms are better
modeled by the new noise dictionary learned upon classification and
the new activation matrix, the proposed method provides a higher
classification capability for event classes modeled by MLD when a
signal to be classified is contaminated by unknown acoustic atoms.
Evaluation results using DCASE2016 task 2 Dataset have shown
that F-measure by the proposed method with semi-supervised NMF
has been improved by as much as 11.1% compared to that by the
conventional method with supervised NMF.
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