
Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

GATED RECURRENT NETWORKS APPLIED TO ACOUSTIC SCENE CLASSIFICATION
AND ACOUSTIC EVENT DETECTION
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ABSTRACT

We present two resource efficient frameworks for acoustic scene
classification and acoustic event detection. In particular, we com-
bine gated recurrent neural networks (GRNNs) and linear discrimi-
nant analysis (LDA) for efficiently classifying environmental sound
scenes of the IEEE Detection and Classification of Acoustic Scenes
and Events challenge (DCASE2016). Our system reaches an over-
all accuracy of 79.1% on DCASE 2016 task 1 development data,
resulting in a relative improvement of 8.34% compared to the base-
line GMM system. By applying GRNNs on DCASE2016 real event
detection data using a MSE objective, we obtain a segment-based
error rate (ER) score of 0.73 – which is a relative improvement of
19.8% compared to the baseline GMM system. We further inves-
tigate semi-supervised learning applied to acoustic scene analysis.
In particular, we evaluate the effects of a hybrid, i.e. generative-
discriminative, objective function.

Index Terms— Acoustic Scene Labeling, Gated Recurrent
Networks, Deep Linear Discriminant Analysis, Semi-Supervised
Learning

1. INTRODUCTION

In acoustic scene classification the acoustic environment is la-
beled. Many different features, representing the scene, and models
have been suggested in a recent acoustic scene classification chal-
lenge, summarized in [1]. One of the most popular baseline mod-
els are Gaussian mixture models (GMMs) [2] or hidden Markov
models (HMMs) [3, 4] using mel-frequency cepstral coefficients
(MFCCs). Interestingly, various deep architectures have not been
applied in [1]. Recent work however, shows that deep neural net-
works (DNNs) boost the classification accuracy when applied to
audio data [5]. In particular, Cakir et al. [6, 7] proposed a DNN
architecture for acoustic scene classification. In [8], long-short-
term memory networks (LSTMs), i.e. DNNs capable of modeling
temporal dependencies, were applied to acoustic keyword spotting.
Performance in recognition comes at the expense of computational
complexity and the size of labeled data available. LSTMs have a
relatively high model complexity. Furthermore, parameter tuning
for LSTMs is not always simple.
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Due to the great success of deep recurrent networks for
sequence modeling [9, 10], we advocate gated recurrent neural
networks (GRNNs) [11, 12, 13] for acoustic scene and event
classification. GRNNs are a temporal deep neural network with
reduced computational complexity compared to LSTMs. We
evaluate GRNNs on environmental sound scenes of the IEEE De-
tection and Classification of Acoustic Scenes and Events challenge
(DCASE2016) [14]. GRNNs proof themselves in practice through
fast and stable convergence rates. We obtain an overall accuracy of
79.1% on development data, i.e. a relative improvement of 8.34%
compared to the baseline GMM system, using GRNNs and linear
discriminant analysis (LDA). Furthermore, we used GRNNs for
acoustic event detection, i.e. task 3 in DCASE2016. For this task
we obtain a segment-based error rate (ER) of 0.82 and 0.63 for the
scene categories home and residential area, respectively.

This work is structured as follows: Firstly, we introduce
GRNNs in Section 3. In Section 4 we discuss various regularizers
for GRNNs. Finally, we show experimental results for the challenge
data in Section 7 and draw a conclusion in Section 8, respectively.

2. ACOUSTIC ANALYSIS FRAMEWORKS

2.1. Scene Classification Framework

Figure 1 shows the processing pipeline of our acoustic scene analy-
sis framework. We extract sequences of features frames xf , where
xf ∈ RD . In particular, we derive MFCCs or log-magnitude spec-
trograms, given the raw audio data xt. We feed frequency domain
features into the GRNN and estimate a class label for every frame
f . Finally, we compute a histogram over all classified frames of
the audio segment, where the maximum value determines the final
scene class.

Figure 1: DCASE2016 task 1: GRNN scene classification system.

2.2. Event Detection Framework

Figure 2 shows the processing pipeline of our acoustic event detec-
tion framework. Similar as above, we extract sequences of feature
frames xf of MFCCs or log-magnitude spectrograms, given the raw
audio data xt. These feature frames are processed by a GRNN and
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class labels are determined by applying individual thresholds on the
real-valued output of the GRNN. Similar as in [14], we post-process
the events by detecting contiguous regions neglecting events smaller
than 0.1 seconds as well as ignoring consecutive events with a gap
smaller than 0.1 seconds.

Figure 2: DCASE2016 task 1: GRNN event detection system.

3. DISCRIMINATIVE GRNNS

GRNNs are recurrent neural networks (RNNs) using blocks of
gated recurrent units. GRNNs are a simple alternative to LSTMs,
reaching comparable performance, but having fewer parameters.
They only use reset- and update-gates. These switches couple
static and temporal information allowing the network to learn
temporal information. In particular, the update-gate z decides to
re-new the current state of the model, whenever an important event
is happening, i.e. some relevant information is fed into the model
at step f . The reset-gate r is able to delete the current state of the
model, allowing the network to forget the previously computed
information. Figure 3 shows the corresponding flow diagram of a
GRNN layer, respectively. It gives a visual interpretation how the
update- and reset-gates, i.e. z and r, govern the information in the
network.

Figure 3: Flow graph of one GRNN layer [12].

The Equations (1-4) model the network behavior, mathemati-
cally. Starting at the output state hlf of layer l, the network uses
the update-state zlf to compute a linear interpolation between past
state hlf−1 and current information h̃lf in (1). In particular, the
update-state zlf decides how much the unit updates its content; zlf is
computed as sigmoid function of input xlf and the past hidden state
hlf−1 in Equation (2). The weights and bias terms in the model are
denoted as W and b, respectively.

hlf = (1− zlf )hlf−1 + zlf h̃
l
f (1)
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The state h̃lf of the network is computed by applying a non-
linear function g to the affine transformed input and previous hidden
state hlf−1 in (3). This is similar to vanilla RNNs. However, an

additional reset-state, i.e. rlf , is introduced in GRNNs. In particular,
an element-wise multiplication is applied between rlf and hlf−1. In
(4), the reset state is computed based on the current input frame xf
and the provided hidden state hlf−1. Multiple GRNN layers can be
stacked, forming a deep neural network.

4. DISCRIMINATIVE-GENERATIVE GRNNS

Recent advances in the field of semi-supervised learning com-
bines discriminative learning objectives with generative cost terms
[15, 16, 17, 18]. In particular, by modeling the data frame xf us-
ing unlabeled examples, discriminative training objectives are reg-
ularized to prevent overfitting. These so called hybrid architectures
outperform pure discriminative models if little labeled information
is available. In order to exploit this regularization constraint, a re-
construction x̃f of the input frame xf is computed by routing the
network’s output ỹf back to the bottom layer. This is done in any
auto-encoder network by default [19], but could be also achieved
via a separate decoder-network, visualized in Figure 4.

Figure 4: Flow graph of 2-layer hybrid GRNN network.

Following the idea of [15], we add an additional GRNN de-
coder network to the model. In particular, we use a noisy version of
the input, i.e. xf+N (µ=0, σ=1), compute the output activation and
feed the network’s output ỹf back into the decoder network, which
passes the information layer-by-layer down to the bottom and com-
pute a reconstruction x̃f of the input. Next, the MSE between every
hidden states hl of a clean encoder and noisy decoder is computed.
Adding this generative regularization term to the network’s objec-
tive leads to the following hybrid objective function:

C = C1(ỹf , yf )︸ ︷︷ ︸
discriminative

+λ · 1

L

L∑
l=0

Cl2(hle, h
l
d)︸ ︷︷ ︸

generative

, (5)

where C1 and C2 are specific cost functions, such as the MSE cri-
teria. The variable ỹf is the network’s output and yf is the current
target label. The states hle denote the hidden states of the encoder
and hld the hidden states of the decoder, respectively. The variable
λ determines the tradeoff between the generative and discriminative
objective.

5. VIRTUAL ADVERSARIAL TRAINING

Virtual adversarial training (VAT) [20, 17, 21] regularizes discrimi-
native learners by generating adversarial training examples. Given
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a clean training example xf , an input noise pattern ñ is gen-
erated by maximizing the KL-divergence between P (yf |xf ) and
P (yf |xf + n) using a softmax output layer, where the noise n is
limited to ||n||2 < ε, i.e. to the sphere of radius ε located around xf .
This means that the perturbed xf + ñ maximally changes the KL
divergence between the posterior distributions, i.e the virtual adver-
sarial example is most sensitive with respect to the KL-divergence.
The newly obtained adversarial sample x̃f = xf + ñ is used as
additional training example. VAT can be used as a semi-supervised
learning criteria. In this case a contractive cost term is applied on
unlabeled data, scaled by a parameter λ. Further details can be
found in [20].

6. DEEP LINEAR DISCRIMINANT ANALYSIS

Deep linear discriminant analysis (DLDA) [22] combines neural
networks with the linear discriminant analysis (LDA). LDA is a dis-
criminative learning criterion minimizing the inner class variance
and maximizing the between class variance. Due to the lack of rep-
resentational power the LDA criterion is usually not applied to high
dimensional data. However, if combined with a non-linear system
acting as a frontend, the LDA boosts classification performance to a
certain extend. Following [22], we aim to maximize the eigenvalues
vi of the generalized eigenvalue problem:

Sbei = vi(Sw + λI)ei, (6)

where I is the identity matrix, Sb is the between class scatter matrix
and Sw is the within class scatter matrix extracted from the net-
work’s output given the target labels, respectively. Details are in
[22]. The eigenvalues {vi, ..., vk} reflect the separation in the cor-
responding eigenvector space {e1, ..., ek}. In [22], they propose to
optimize the smallest of all C − 1 eigenvalues. This leads to the
following discriminative optimization criterion:

argmax
θ

1

k

k∑
i=1

vi, (7)

where {v1, ..., vk} = {vi|vi < min{v1, ..., vC−1}+ ε}, and ε acts
as a threshold pushing variance to all C − 1 feature dimensions.
This prevents the network from maximizing the distance to classes
where good separation have already been found, and forces the
model to concentrate on potentially non-separated examples
instead. The cost function is differentiable, therefore, any neural
network trainable with backpropagation can act as a frontend. The
parameters θ are the network’s weights and bias, respectively.

7. EXPERIMENTS

7.1. Experimental Setup: Acoustic Scene Classification

We pre-processed all DCASE2016 utterances with a STFT using a
hamming window with window-size 40ms and 50% overlap. Next,
MFCCs including ∆- and ∆2-features were computed. All features
were normalized to zero-mean unit variance using the training cor-
pus. For the experiments we used either MFCCs + ∆ + ∆2 features,
resulting in a 60-bin vector per frame as in [14], or raw 1025-bin log
magnitude spectrograms. In order to guarantee a stable stochastic
optimization, all observations need to be randomized. We imple-
mented a variant of on-the-fly shuffling proposed in [23]. In partic-
ular, we processed batches of 500 randomly indexed, time-aligned

utterance-chunks, cropped to a fixed length of 100 frames, in each
optimization step. By doing so, we ensure proper randomization,
preserving the sequential ordering of each utterance. The final clas-
sification score was obtained by computing a majority vote over all
classified frames of the acoustic scene signal.

We put much effort in designing a solid machine learning
framework which is also runnable on an embedded system. There-
fore, we did not make use of ensemble or boosting methods [24],
which usually, increases the classification performance. We built
a single multi-label classification system instead. In particular, we
used 3-layer GRNNs initialized with orthogonal weights [25] and
rectifier activation functions. A linear output gate was used as a top
layer. All networks have 200 neurons per layer. ADAM [26] was
used for optimizing either the MSE or LDA objective.

7.2. Experimental Database: Acoustic Scene Classification

The DCASE2016 task 1 scene dataset is divided into a training and
test set consisting of 1170 and 290 scene recordings, respectively.
K-fold cross-validation was used for training all networks. In par-
ticular, we split the training corpus into 4 folds including 880 train-
ing utterances and 290 validation scenes, respectively. We report
the average classification accuracy for all 4-folds of the training set.
The labels of the test set are not published yet. More details about
the data and the evaluation setup are in [14].

7.3. Experimental Results: Acoustic Scene Classification

Table 1 shows the overall scores of the DCASE2016 task 1, i.e.
acoustic scene classification. We compared different feature repre-
sentation using a 3-layer GRNN. Feeding raw spectrograms into the
network slightly improves the classification performance, compared
to MFCCs. This is consistent with the findings of [27].

Model Features Objective Accuracy

baseline MFCC MLE 72.5%
GRNN MFCC MSE 74.0%
GRNN spectrogram MSE 76.1%

GRNN MFCC LDA 78.2%
GRNN spectrogram LDA 79.1%

Table 1: DCASE2016 task 1: Comparing MSE and LDA objectives
using a 3-layer GRNN on different input feature representations.

The use of a temporal model boosts recognition results in general.
Most interestingly, the use of the LDA criterion achieved the best
overall result, i.e. 79.1%, which leads to a relative improvement of
8.34% compared to the GMM baseline.

Table 2 shows the overall accuracy of GRNNs using a VAT
regularized objective including the evaluation and test data as a
semi-supervised data set. Furthermore, results for semi-supervised
discriminative-generative GRNNs using the MSE objective are
reported. VAT slightly improves the classification performance
when using MFCC features. However, the result is slightly worse
compared to the LDA criterion. The use of an additional generative
cost function slightly improves the results. In particular, the hybrid
learning criterion, i.e. Equation 5, achieves a relative improvement
of 3.8% compared to the baseline system. However, VAT still
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Model Regularizer Features Objective Accuracy

GRNN VAT MFCC MSE 77.8%
GRNN VAT spectrogram MSE 77.4%

GRNN MSE (Eq. 5) MFCC MSE 75.4%
GRNN MSE (Eq. 5) spectrogram MSE 76.7%

Table 2: DCASE2016 task 1: Semi-supervised training with a 3-
layer GRNN using a VAT regularizer (λ = 0.1, ε = 0.25, Ip = 1)
and hybrid MSE objective (λ =1e-4).

outperformed the hybrid MSE objective.

(a) supervised (MSE) (b) semi-supervised (MSE)

(c) semi-supervised (MSE+VAT) (d) supervised (LDA)

Figure 5: Juxtaposition of supervised and semi-supervised training
using a 3-layer GRNN and a subset of DCASE2016 scene spectro-
grams. Figure 5a-5d show the 1st and 2nd principal component of
the activations generated from the last hidden layer using different
optimization criteria.

Visual interpretations of the hidden activations provide some
insights into neural networks, which are treated as blackbox mod-
els. Figure 5 shows the first two principal components of the acti-
vations the last hidden layer of a 3-layer GRNN, using a subset of
DCASE2016 task 1 data. Starting with a pure discriminative learn-
ing criterion in Figure 5a, we see that a non-regularized MSE objec-
tive produces slightly overlapping clusters. By adding a generative
cost function, i.e. hybrid MSE optimization criterion in (5), as well
as a VAT regularizer (see Section 5) the inner class variance is low-
ered, improving the overall class margins in the end. In both, MSE
and VAT objectives, the between class variance is not maximized.
In Figure 5d however, we clearly see that the LDA criterion in (6)
produces more separated class projections. In this case, the within
class variance is minimized, whereas the between class variance is
maximized.

7.4. Experimental Database: Acoustic Event Detection

The DCASE2016 task 3 acoustic event dataset is divided into a
training and test set containing 22 recordings. The dataset has two
scene categories, i.e. home and residential area. The home training
corpus contains 7 event classes with 563 events, whereas the resi-
dential area training corpus contains 11 event classes including 906
events. Similar as in Section 7.2 K-fold cross validation, using 4
folds, was applied. More details about the data and the evaluation
setup are in [14].

7.5. Experimental Setup: Acoustic Event Detection

We applied the same pre-processing routines, i.e. STFT calculation,
MFCC and log-magnitude spectrogram extraction, as in Section
7.1 using data of the DCASE2016 sound event detection in real
life audio challenge (task 3). Regarding the training procedure,
we extended the on-the-fly shuffling routine in two ways: We
drop frames with a probability of 50% and use smaller permuted
sequence batches. By doing so, we increase the data size by
introducing slight permutations and variations of the training
sequences. Frames with multiple event labels were removed in the
training corpus, forcing the model to extract class specific features.
Apart from that, an additional blank label was introduced. The
model sizes and configuration parameters are kept the same as in
Section 7.1.

7.6. Experimental Results: Acoustic Event Detection

Model Features Objective ER F [%]

baseline MFCC MLE 0.90 37.3

GRNN MFCC MSE 0.74 42.3
GRNN spectrogram MSE 0.73 47.6

Table 3: DCASE2016 task 3: Classification results GRNNs using
MFCCs or log-magnitude spectrograms and a MSE objective.

Model Acoustic Scene Segment-based Event-based
ER F [%] ER F [%]

GRNN home 0.82 37.3 1.55 2.9
GRNN residential area 0.63 57.9 4.64 0.9
GRNN average 0.73 47.6 3.9 1.9

Table 4: DCASE2016 task 3: Detailed classification results with a
3-layer GRNN using a MSE objective and log-magnitude spectro-
grams.

Table 3 shows the results of the DCASE2016 task3 real audio
event detection task using GRNNs. We did not apply a LDA due to
overlapping events in the test set. GRNNs trained on log-magnitude
spectrograms achieved an overall segment-based error rate (ER) of
0.73 and an F-score of 47.6%. This results in a relative improvement
of 19.8% and 51.1% compared to the baseline GMM model for the
ER- and F-scores, respectively. The error measures are specified in
detail in [14]. In Table 4 detailed segment- and event-based results
for both, home and residential area are reported.
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8. CONCLUSION

We applied gated recurrent neural networks (GRNNs) to acoustic
scene and event classification. In particular, we trained a 3-layer
GRNN on environmental sounds of the IEEE Detection and Clas-
sification of Acoustic Scenes and Events challenge (DCASE2016)
(task 1 and task 3). The use of virtual adversarial training (VAT)
slightly improves the model performance using MFCC features. For
scene classification, models trained with a deep linear discriminant
objective (LDA) using log-magnitude spectrogram representations
outperformed VAT regularized networks. For acoustic event detec-
tion we use a multi-label GRNN. For both tasks we outperform the
GMM baseline system significantly.

9. REFERENCES

[1] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and
M. D. Plumbley, “Detection and classification of acoustic
scenes and events,” IEEE Trans. Multimedia, vol. 17, no. 10,
pp. 1733–1746, 2015.

[2] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acous-
tic event detection in real life recordings,” in 18th European
Signal Processing Conference, 2010, pp. 1267–1271.

[3] J. Keshet and S. Bengio, “Discriminative keyword spotting,”
in Automatic Speech and Speaker Recognition: Large Margin
and Kernel Methods. Wiley Publishing, 2009, pp. 173–194.

[4] G. Chen, C. Parada, and G. Heigold, “Small-footprint key-
word spotting using deep neural networks,” in 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014, pp. 4087–4091.

[5] M. Zhrer, R. Peharz, and F. Pernkopf, “Representation learn-
ing for single-channel source separation and bandwidth exten-
sion,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 23, no. 12, pp. 2398–2409, 2015.

[6] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Multi-
label vs. combined single-label sound event detection with
deep neural networks,” in 23rd European Signal Processing
Conference 2015 (EUSIPCO 2015), 2015.

[7] E. Cakir, T. Heittola, H.Huttunen, and T.Virtanen, “Poly-
phonic sound event detection using multi label deep neural
networks,” in 2015 International Joint Conference on Neural
Networks (IJCNN), 2015, pp. 1–7.

[8] G. Chen, C. Parada, and T. N. Sainath, “Query-by-example
keyword spotting using long short-term memory networks,”
in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015, pp. 5236–5240.

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Infor-
mation Processing Systems 27, 2014, pp. 3104–3112.

[10] A. Graves, N. Jaitly, and A.-R. Mohamed, “Hybrid speech
recognition with deep bidirectional LSTM,” in IEEE Work-
shop on Automatic Speech Recognition and Understanding,
2013, pp. 273–278.

[11] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio,
“On the properties of neural machine translation: Encoder-
decoder approaches,” CoRR, vol. abs/1409.1259, 2014.

[12] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” CoRR, vol. abs/1412.3555, 2014.

[13] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feed-
back recurrent neural networks,” CoRR, vol. abs/1502.02367,
2015.

[14] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection,”
in 24th European Signal Processing Conference 2016 (EU-
SIPCO 2016), Budapest, Hungary, 2016.

[15] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and
T. Raiko, “Semi-supervised learning with ladder networks,” in
Advances in Neural Information Processing Systems 28, 2015,
pp. 3546–3554.

[16] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and
M. Welling, “Semi-supervised learning with deep generative
models,” in Advances in Neural Information Processing Sys-
tems 27, 2014, pp. 3581–3589.

[17] A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow, “Ad-
versarial autoencoders,” CoRR, vol. abs/1511.05644, 2015.
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