asliTy
13
Tl
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FEATURES, BALANCING COST, AND STOCHASTIC DATA DUPLICATION E mnmw é“é
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Abstract

- Proposed

- Dual input features : simultaneously using two different features (mel-filterbank energy, i-vector)
- Balancing cost : optimized object function defined for dual input feature approach

i - Stochastic data duplication : DNN training data manipulation based on confusion matrices

- Residual architecture was applied with the proposed approaches

- Classification accuracy of 70.6 % was shown with DCASE 2017 evaluation set

Contribution N

- Technique of using two different features were proposed with optimized objective function
- Latest DNN-based advances were applied on audio scene classification
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Dual input features
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NLL : Negative log likelihood layers * K. He, X. Zhang, . Ren, and J. Sun, “Deep residual
w - weight matrix between input layer and the first hidden layer i (20 blocks + 2 fully- learning for image recognition,” in Proceedings of the
i . 1EEE Confer- ence on Computer Vision and Pattern
@, . hyper-parameters for balancing cost (1000, 100) connected) Recognition, 2016, pp. 770-778.
FC : fully-connected Residual architecture

- Result (classification accuracy, %)
- System 1: dual input features
- System 2: System 1 + balancing cost
- System 3: System 2 + stochastic data duplication
- System 4: System 3 + residual network
System #  Validation set  Evaluation set

Experiments & Results

- DB : DCASE 2017 task 1
- Dev : 312 segmentsx15 scenes/Eval : 1620 segments
- Feature :40-dimensional mel-filterbank features +
200-dimensional i-vector
- Dimension of mel-filterbank features were reduced

to 10 with LDA, and context frames (left 22, right 22): System 1 85.5 67.0
was applied i System 2 Rl 66.2
e System 3 95.5 67.3

- L2-regularization(A=10+ ), dropout applied i System 4 95.9 70.6




