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Overview

Our method submitted to large-scale weakly supervised sound event detection for smart cars in the DCASE Challenge 2017
Task 4. It is based on two deep neural network methods suggested for music auto-tagging. One is training sample-evel Deep
Convolutional Neural Networks (DCNN) using raw waveforms as a feature extractor. The other is aggregating features on
multi-scaled models of the DCNNs and making final predictions from them. With this approach, we achieved the best results,
47.3% in F-score on subtask A (audio tagging) and 0.75 in error rate on subtask B (sound event detection) in the evaluation.
These results show that the waveform-based models can be comparable to spectrogram-based models when compared to

other DCASE Task 4 submissions.
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Combination of Multi-Scale Features
Event sounds have different timbre pattems in terms of feature
hierarchy and time-scales. The sanple-level DCNNs take different

input sizes to capture both local and global characteristics of the
sounds.
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Submissions

* SDCNN: Sample-level DCNN that takes 893nms of audio as
input. This is one of the models used as a feature extractor for
the rest submissions.

« MLMS5: Mutidevel and Mutiscale features extracted from
models taking 372ms, 557ms, 627ms, 743ms and 893ms as
input.

¢ MLMS3: Mutidevel and Mutiscale features extracted from
models taking 1486ms, 2678ms and 3543ms as input.

¢ MLMS8: Mutidevel and Muti-scale features extracted from
models taking 372ms, 557ns, 627ms, 743ms, 893mms, 1486mns,
2678ms and 3543ms as input.

Feature Aggregation and Final Classification

* Subtask A » Subtask B

The features of al segments are  Segment-level features are
averaged into a single feature averaged every second.
vector foreach model.
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Lastly, the final prediction is performed using a fuly-connected
neural network for each subtask.

Filter Visualization

Layer 4 Layer 5 Layer 6

ayer Layer
Spectrum of the filters in the sampledevel convolution layers which
are sorted by the frequency at the peak magnitude. The x-axis
represents theindex of the filters and the y-axis represents the
frequency. We can observe that they are sensitive to more log-scaled
in frequency as the layer goes up.

Results
* Instance-based results for subtask A

Development set Evaluation set

F-score  Prec. Rec. F-score  Prec. Rec.
SDCNN | 378% 26.7% 64.8% | 403% 31.3% 56.7%
MLMSS | 443% 388% 51.7% | 473% 48.0% 46.6%
MLMS3 | 422% 39.0% 459% | 472% 49.6% 45.0%
MLMSS8 | 43.8% 392% 495% | 47.1% 48.5% 45.9%

* |Instance-based results for subtask B

Development set | Evaluation set
ER  F-score ER  F-score
SDCNN | 0.88 28.1% 0.82  39.4%
MLMSS5 | 0.86 30.7% 078  42.6%
MLMS3 | 0.86 31.2% 078 44.2%
MLMSS8 | 0.84 34.2% 075 47.1%

Discussion

* The feature aggregation and final classification stage improve
performance compared tothedirect result of SDCNN.

+ Class-wise performance indicates that audio clips with different
tags are optimalin different time scales.
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