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Introduction

IMotivations:
. 2D spectrograms are applied successfully in
acoustic scene classifidcation

.Wavelet transform incorporates multiple scales
and localisations

IMajor Contributions:
. Use scalograms to extract powerful
representations

. Combine pre-trained CNNs with GRNNs by
transfer learning

Deep Sequential Images

IThe short-time Fourier transform (STFT)
for a signal x(t) is defined by,

X(τ, ω) = ∫∞
−∞ x(t)ω(t− τ )e−jωt, (1)

where t: time, ω(t): window function, τ :
time index.

IThe bump wavelet transform is defined by,

Ψ(sω) = e

1− 1
1−(sω−µ)2/σ2

1[(µ−σ)/s,(µ+σ)/s], (2)
where s: scale, ω: window, µ and σ: two
constant parameters.

IThe morse wavelet generation is defined by,

ΨP,γ(ω) = u(ω)αP,γω
P2
γ e−ω

γ

, (3)
where u(ω): unit step, ω: window, αP,γ: a
normalising constant, P : time-bandwidth
product, γ: symmetry.
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Figure: Images of the first audio sequence of
“a001_0_10.wav” with a label residential area.

Feature Extraction and Classification
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Figure: Framework of our proposed system.

Table: Configurations of the VGG16 CNNs.

Input: 224×224 RGB image
2×conv size: 3; ch: 64; Maxpooling
2×conv size: 3; ch: 128; Maxpooling
3×conv size: 3; ch: 256; Maxpooling
3×conv size: 3; ch: 512; Maxpooling
3×conv size: 3; ch: 512; Maxpooling

fc6 layer with 4096 neurons
fc7 layer with 4096 neurons
fc layer with 1000 neurons

Output: softmax layer for 1000 classes
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Figure: Illustration of a Gated Recurrent Unit (GRU).

IFeature Extraction:
. VGG16 Convolutional Neural Networks (CNNs)

IClassification:
. Gated Recurrent Neural Networks
. Decision Fusion by Margin Sampling Value (MSV)

Database

IDCASE 2017 database:
. 312 segments of 10 s from 52 minutes of audio recordings
. 15 classes: beach, bus, cafe/restaurant, car, city center, forest path, grocery store, home, library, metro
station, office, park, residential area, train, and tram

. An unlabelled evaluation set and four folds, each of which contains a training set and a development set

Experimental Results

Table: Performance comparison of different epochs of GRNNs(120-60), learning
rate=0.0002.

accuracy [%] Fold1 Fold2 Fold3 Fold4 Mean
(a) STFT
epoch 30 77.9 72.5 73.1 79.3 75.7
epoch 50 79.2 74.7 74.3 77.7 76.5
epoch 70 77.1 75.8 72.9 77.4 75.8
(b) bump wavelet
epoch 30 74.5 75.4 73.9 77.2 75.2
epoch 50 73.6 72.9 73.6 73.2 73.3
epoch 70 69.7 73.4 72.6 72.1 72.0
(c) morse wavelet
epoch 30 74.5 75.4 73.9 77.2 75.2
epoch 50 73.6 72.9 73.6 73.2 73.3
epoch 70 69.7 73.4 72.6 72.1 72.0

Table: Performance comparison of different combinations of the three feature sets by
decision fusion on GRNNs(120-60), learning rate=0.0002.

accuracy [%] Fold1 Fold2 Fold3 Fold4 Mean
STFT+bump 82.6 79.5 77.5 80.9 80.1
STFT+morse 81.1 80.0 76.5 81.5 79.8
bump+morse 76.7 77.5 76.0 77.5 76.9
STFT+bump+morse 82.6 80.7 78.7 81.5 80.9

Conclusions

IClassify deep STFT and wavelet features on GRNNs
IWavelet features are helpful to increase the accuracy
IFuture work:
. Investigate which CNNs infer the best representations
. Experiment with data augmentations of the training data
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