AudioSet:{Real-worldAudio Event Classification

<u>g.co/audioset</u>

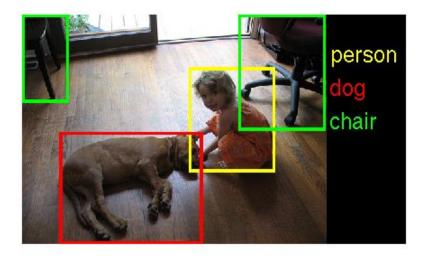
Rif A. Saurous, Shawn Hershey, Dan Ellis, Aren Jansen and the Google Sound Understanding Team 2017-10-20

Research at Google

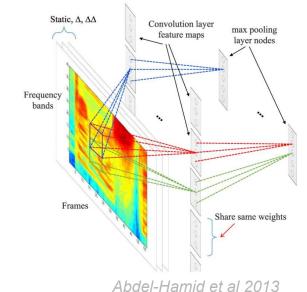
- The Early Years: Weakly-Supervised YouTube Videos
- AudioSet Is Born
- AudioSet: Supervised and Unsupervised

General Audio Event Classification

- Audio Event Classification Using ideas from:
 - ImageNet Object Recognizers

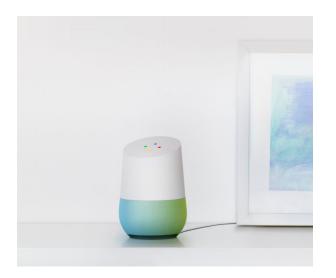


• DNN Speech Recognition



Audio Event Detection: Applications

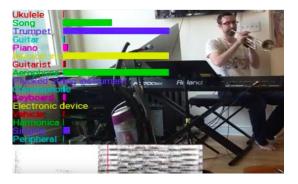
- Content-based Archive Search
- Surveillance/Event Detection
- Context Awareness



Web Video Classification - Summary

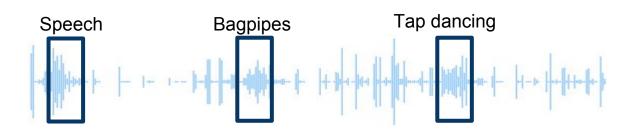
A TON of Weakly Labeled YouTube Audio CNN architectures from computer vision community

Awesome Audio Event Classification



Tasks of Interest

Audio Event Detection



YouTube-100M DataSet

• Size

- ~100M videos with video-level labels
 (~5 million hours, 600 years)
- 20 billion input examples

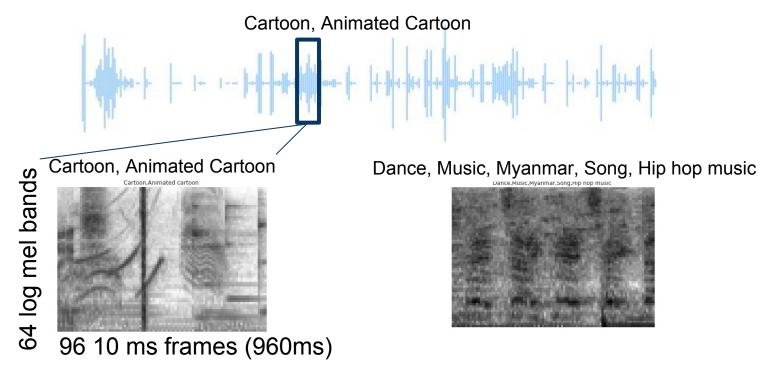
Labels

- 30K labels (not all obviously acoustically relevant)
- ~3 labels per videos

Label prior	Example Labels
$0.1 \dots 0.2$	Song, Music, Game, Sports, Performance
0.010.1	Singing, Car, Chordophone, Speech
$\sim 10^{-5}$	Custom Motorcycle, Retaining Wall
$\sim 10^{-6}$	Cormorant, Lecturer

It's BIG

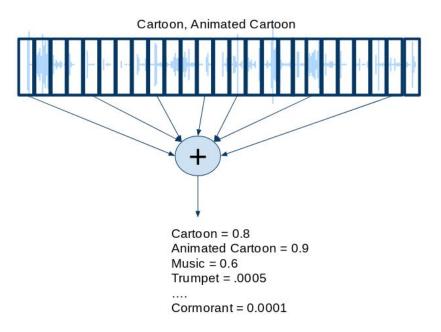
Training



• Train frame level classifier (very weak labeling)

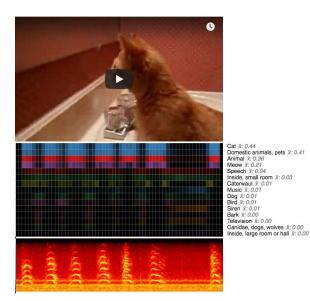
Evaluation

- Run frame-level classifier over each non-overlapping 960ms
- Aggregate over frames to evaluate video level scores
- Calculate mAP, AUC (DPrime)



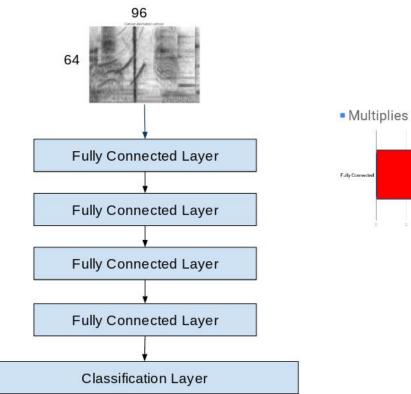
Gut-feel Evaluation

- Look at ratings against a few favorite test cases
 - Potential problem: Focus on a few minor classes?



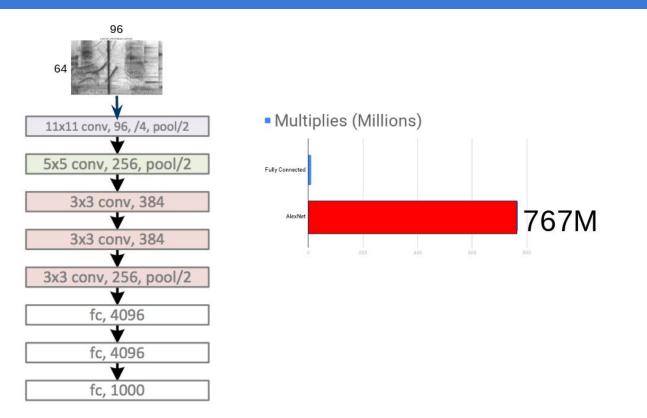
- Architectures How well do various CNN architectures perform?
- Training Size How do we benefit from training set size?
- Useful embeddings Can we learn generally useful audio embeddings from our large dataset. (Embeddings that can be used as features to predict labels not in the original training set).

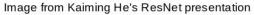
Architectures - Fully Connected



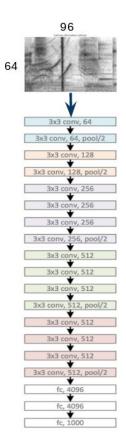


Architectures - AlexNet [Alex Krizhevsky et al. 2012]





Architectures - VGG E [Karen Simonyan et al. 2015]



Multiplies (Millions)

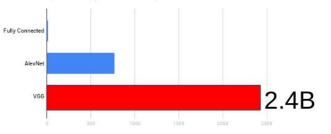


Image from Kaiming He's ResNet presentation

Architectures - Inception V3 [Christian Szegedy et al. 2015]

Architectures - ResNet [Kaiming He et al. 2015]

64

Multiplies (Millions)

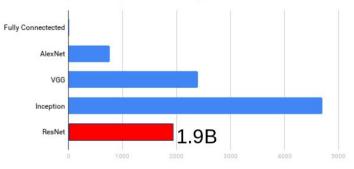
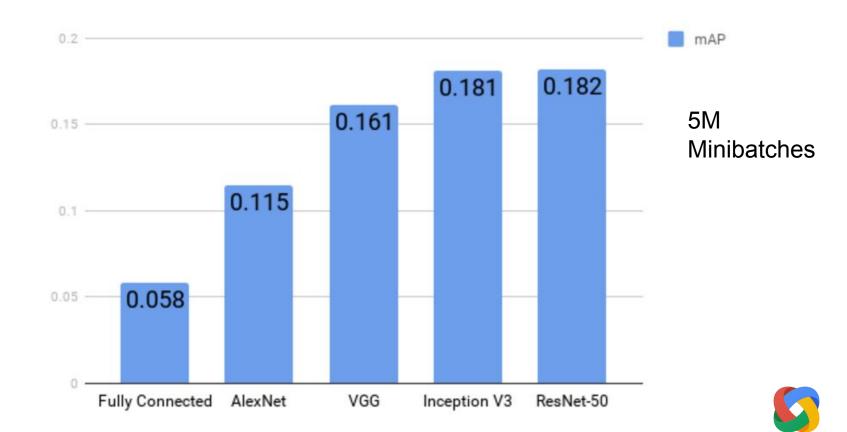


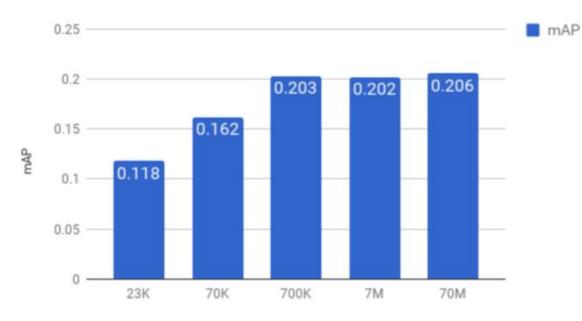
Image from Kaiming He's ResNet presentation

Architectures - Results



Training Size - Results

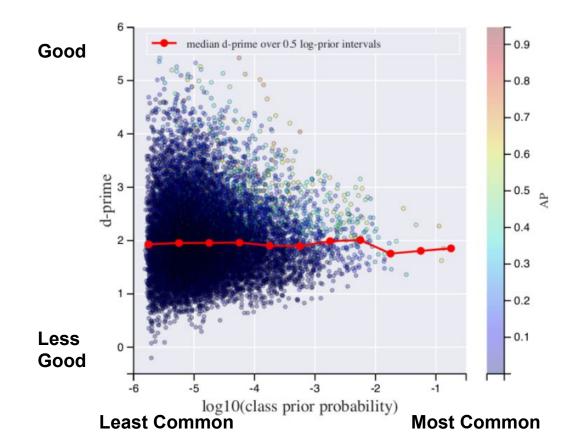
• Model Used: ResNet-50 (16M mini batches)



mAP vs. Training Videos

Training Videos

DPrime vs Prior



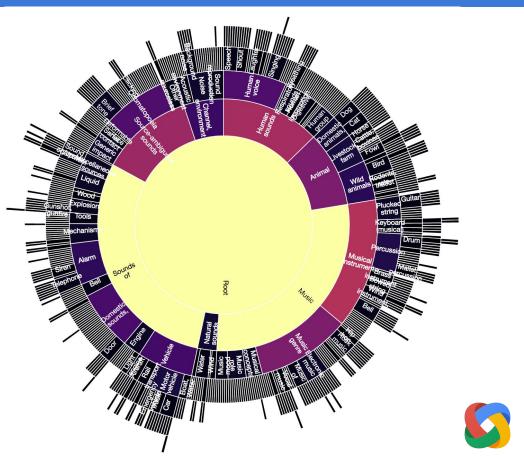
What's Next?

- Web video tags are not sound terms
 - \circ $\,$ We want the soundtrack described
 - \circ $\,$ We need a set of sound-description terms

The AudioSet Ontology

github.com/audioset/ontology

- Need a set of sound events
 - 635 "sound" terms in7 categories
- Start from **Hearst patterns**:
 - ".. sounds, such as X .."
- Refined via:
 - Other sound event lists (Salamon'14, Burger'12,..)
 - Feedback from raters
 - Manual inspection...



More About The AudioSet Ontology

- Ontology Class Set goals:
 - Not too fine: Non-expert can discriminate consistently
 - Not too few: Cover all normally-encountered sounds
- Evolution
 - Merges:
 "Tire squeal" + "Skidding"
 - Deletions: "Sidetone"
 - Additions: "Ukulele", "Stairs"

```
{ "id": "/m/0160x5",
```

```
"name": "Digestive",
```

"description": "Sounds associated with the human function of eating and processing nutrition (food).", "citation_uri": "", "positive_examples": [],

```
"child_ids": ["/m/03cczk", "/m/07pdhp0", "/m/0939n_", "/m/01g90h",
"restrictions": ["abstract"] },
```

```
{ "id": "/m/03cczk",
```

```
"name": "Chewing, mastication",
```

```
"description": "Food being crushed and ground by teeth.",
```

```
"citation_uri": "http://en.wikipedia.org/wiki/Mastication",
```

```
"positive_examples": ["youtu.be/EBnrA85wsc4?start=530&end=540", "y
```

```
"child_ids": [],
```

```
"restrictions": [] },
```


AudioSet Labeled Data

- Verification task
 - Using metadata, identify videos that may contain sound class X
 - Check for other possible classes
 - Extract random 10 s excerpt
 - Ask labeler Present/Absent/Unsure

**		C	0	Skip Reason	Skip	-		-	-	
100	struct	IOHS								
		Short					 			
Pla	yer: P	= Play	Video, S	5 = Pause Video, resent, N = Not p						ubn
Pla	yer: P	= Play	Video, S	resent, N = Not p					tic, EN	

	[Clorrect/present	[Nlot present	[D]on't know/unsure	Not-IAlcoustic
Combat sport	0		0	0
Sports	0		0	0

Submit

Add missing audio labels as a comma-seperated list

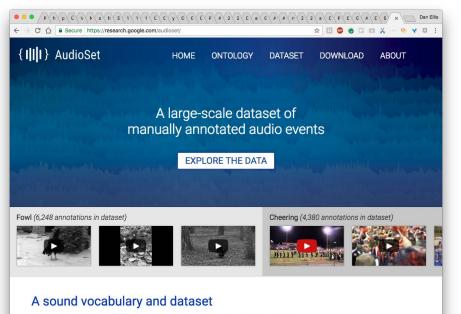
Comments (optional):

When Metadata Fails

- For obscure sounds, metadata fails to find a large number of good candidates
- Exemplar-based Mining (assumes a few 10s segments for class):
 - 1. Extract frame-level embeddings using YT-100M bottleneck layer
 - 2. Cluster the frame-level embeddings to find frames shared across segments
 - 3. Use those frames in multiquery-by-example search over a millions of YT videos
 - Retrieval score is average distance to individual example frames from step 2
 - 4. Present retrieved frames (padded to 10s) to labeler for verification
- Pro: recovers a more diverse collection of new positives and difficult negatives for rare classes
- Con: sampling biased by existing models (still not as diverse as desired)

AudioSet Data Release

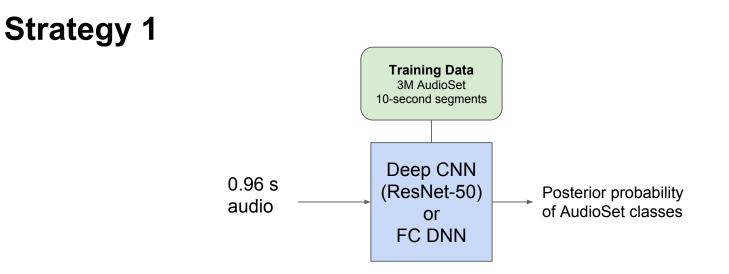
- A large-scale collection of Labeled sound examples
 - Like ImageNet for sounds
- 2M+ ten-second excerpts from high-viewcount YT videos (1000x smaller than YT-100M But strongly labeled)
- At least 120 examples for 500+ classes



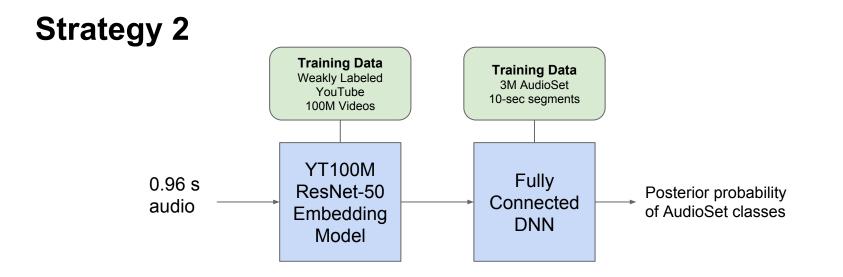
AudioSet consists of an expanding ontology of 632 audio event classes and a collection of 2,084,320 humanlabeled 10-second sound clips drawn from YouTube videos. The ontology is specified as a hierarchical graph of event categories, covering a wide range of human and animal sounds, musical instruments and genres, and common everyday environmental sounds.

By releasing AudioSet, we hope to provide a common, realistic-scale evaluation task for audio event detection, as well as a starting point for a comprehensive vocabulary of sound events.

Training Classifiers on AudioSet



Training Classifiers on AudioSet



AudioSet Performance

- Training: 3M AudioSet 10s segments, 527 classes
- **Evaluation:** explicit hard negatives (average prior: 0.282)

Feature	Model	EER	mAP	
Log Mel	Fully connected	33.3%	0.445	Stratogy 1
Log Mel	ResNet-50	24.5%	0.605	Strategy 1
YT100 Embeddings	Fully connected	25.7%	0.580	- Strategy 2

- Convolutional ResNet model huge improvement over fully connected
- Transfer of embedding from large-scale weakly labeled model does not help overall (but greatly reduces training data requirements in semi-supervised experiments)

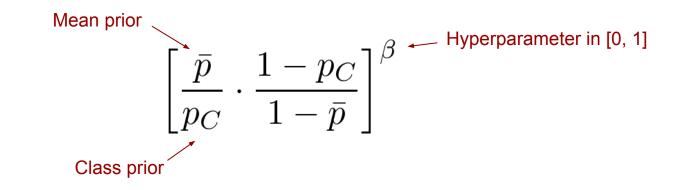
Complication #1: Extreme Class Imbalance

- **Problem:** priors range from 0.0001 (e.g. toothbrush, gargling, creak) to 0.5 (e.g. music, speech, vehicle)
 - Results in poor score calibration across classes
 - High-prior classes like speech and music are always strongest detections

- **1990s libsym solution:** per-class loss weights that balance positive and negative examples
 - Simply does not work at our level of imbalance and model complexity
 - Shared network: one toothbrush example is not worth 5000 speech examples

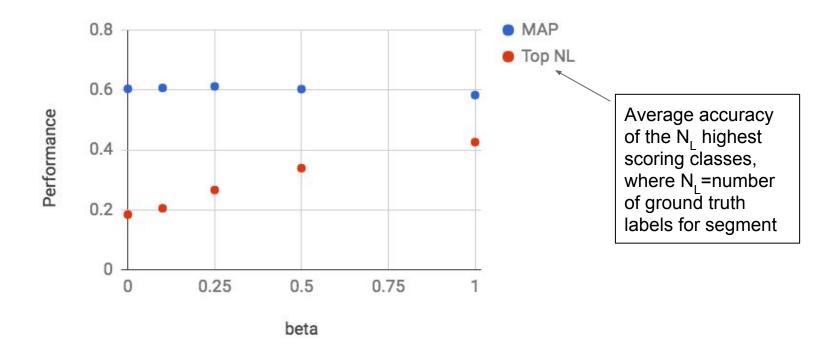
Complication #1: Extreme Class Imbalance

- Solution that works: per-class loss weights that balance to mean prior (~0.003), not 0.5
 - We weight class C positive example loss contribution by



- *Negative* examples not weighted.
- Exponent hyperparameter allows easy backing off from full balancing

Weighted Loss Performance



- Slight improvement to mAP for beta = 0.1, 0.25
- More than doubling of prediction accuracy with full weighting (beta = 1)

Complication #2: Weak Labels

- **Problem:** AudioSet segments are still weakly labeled:
 - Positive label implies event occurs in 10-sec segment, but we do not know extent
- **Solution:** apply simple label refinement of training data:
 - 1. Train model on original data
 - 2. For training segment $S = \{x_i\}$ with label *L*, compute max-normalized frame scores

$$n_i = \frac{P(L|x_i)}{\max_{x \in S} P(L|x)}$$

- 3. Discard frames where n_i falls below some prescribed threshold
- The Catch: target class needs to be most prevalent sound in present in labeled segments (relative to prevalence in set as a whole)

Weak Label Refinement Demo



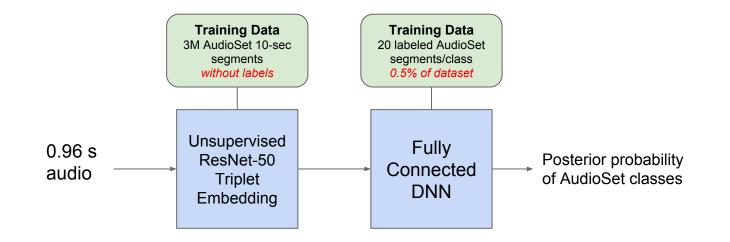
Without refinement Speech activated throughout With refinement (0.66 threshold) Speech activated only when speaking or breathing (difficult confound)

Unsupervised Triplet Loss Embedding

- The Idea: train triplet loss embedding models using unsupervised (a.k.a. self-supervised) constraints:
 - 1. Noise corrupted audio retains the categorical content of the clean signal.
 - 2. Sound is transparent: mixing two sound classes results in an (often-natural sounding) example of both classes.
 - 3. Sound classes are translation invariant in time and, to some extent, frequency.
 - 4. Sounds in close proximity or in same source content are likely to be categorically similar

• When expressed as triplets, trivial to combine all constraints into single huge convolutional network

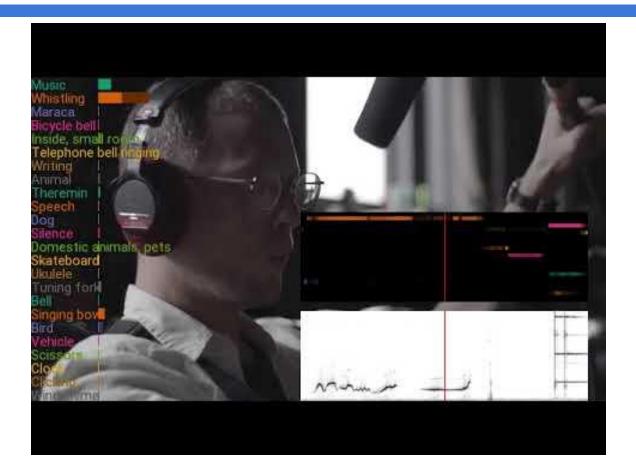
Semi-Supervised AudioSet Classifier



Semi-Supervised AudioSet Performance

% Data Labeled	Feature	Model	EER	mAP
100%	Log Mel	Fully connected	33.3%	0.445
100%	Log Mel	ResNet-50	24.5%	0.605
0.5%	Log Mel	Fully connected	40.6%	0.338
0.5%	Log Mel	ResNet-50	37.7%	0.385
0.5%	Unsup. Triplet Embedding	Fully connected	34.0%	0.429

AudioSet Demo Video



Future Work

- Transient Events
- Sound Mixtures
- Other Data Sources
 - Closed captions
 - Sound Effects Databases
 - Direct solicitation
 - Other modalities & label sources

