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ABSTRACT

This paper proposes a neural network architecture and training
scheme to learn the start and end time of sound events (strong la-
bels) in an audio recording given just the list of sound events exist-
ing in the audio without time information (weak labels). We achieve
this by using a stacked convolutional and recurrent neural network
with two prediction layers in sequence one for the strong followed
by the weak label. The network is trained using frame-wise log mel-
band energy as the input audio feature, and weak labels provided in
the dataset as labels for the weak label prediction layer. Strong la-
bels are generated by replicating the weak labels as many number
of times as the frames in the input audio feature, and used for strong
label layer during training. We propose to control what the network
learns from the weak and strong labels by different weighting for the
loss computed in the two prediction layers. The proposed method is
evaluated on a publicly available dataset of 155 hours with 17 sound
event classes. The method achieves the best error rate of 0.84 for
strong labels and F-score of 43.3% for weak labels on the unseen
test split.

Index Terms— sound event detection, weak labels, deep neural
network, CNN, GRU

1. INTRODUCTION

Sound event detection (SED) is the task of recognizing sound events
and its respective start and end timings in an audio recording. Rec-
ognizing such sound events and its temporal information can be use-
ful in different applications such as surveillance [1, 2], biodiversity
monitoring [3, 4] and query based multimedia retrieval [5]. Tra-
ditionally, SED has been tackled with datasets that have temporal
information for each of the sound event present [6, 7]. We refer to
such temporal information of sound events as strong labels in this
paper.

The internet has a vast collection of audio data. Many collab-
orative and social websites like Freesound 1 and YouTube 2 allow
users to upload multimedia with metadata like captions and tags.
We can potentially automate the collection of audio data associated
with a given tag from these online sources in considerably less time
and manual effort. Recently, Gemekke et al. [8] carried out this
with 632 sound event tags on YouTube and collected nearly two

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND. The
authors also wish to acknowledge CSC-IT Center for Science, Finland, for
computational resources.

1https://freesound.org/
2https://www.youtube.com/

million 10 second audio recordings. While these tags indicate that
the sound event is present in the audio recording, the tags do not
contain the information as to how many times they occur or at what
time they occur. In this paper, we call such tags without any tempo-
ral information as weak labels. The task of identifying weak labels
of an audio is also referred as audio tagging in literature [9, 10].

Collecting and annotating data with strong labels to train SED
methods is a time-consuming task involving a lot of manual labor.
On the other hand, collecting weakly labeled data takes much less
time to annotate manually, since the annotator has to mark only the
active sound event classes and not its exact time boundaries. If we
can build SED methods which can learn strong labels from such
weakly labeled data, then the methods can learn on a large amount
of data. In this paper, we propose to implement such a strong label
learning SED method using weakly labeled training data.

Similar research of using weakly labeled data to learn strong
labels has been done in neighboring audio domains such as mu-
sic [11, 12], and bird classification [13, 14]. Liu et al. [11] used
a fully convolutional neural network (FCN) to recognize instru-
ments and tempo for each time frame of an audio clip given only
the clip level information. They further extended this network to
sound event detection [15] and experimented on publicly available
datasets. The advantage of using an FCN is it can handle audio input
of any length. On the other hand, the limitation is that the frame-
wise strong labels are obtained by an upscaling layer which repli-
cates segment-wise output to as many number of frames required.
Similar FCN as [15] was proposed in [16] without the upscaling
layer, thereby estimating labels for short segments of length 1.5 s
instead of frame wise labels. The study compares the performance
of this FCN with a VGG-like network [17] like network which out-
puts sound event labels in segments of 1.5 s. The FCN network is
trained using the entire audio, and its respective weak label. On the
other hand, the VGG network is trained on sub-segments of the en-
tire audio, assuming that the recording level weak label annotation
remains the same in all its sub-segments. The study showed that
using an FCN performs better SED than using the VGG method.
Kumar et al. [18] proposed a multiple instance learning (MIL) ap-
proach [19] for this task, though the results were promising the ap-
proach was claimed to be not scalable to large datasets by the same
authors in [16].

Sound events in real life most often overlap each other. A SED
method which can recognize such overlapping sound events is re-
ferred as polyphonic SED method. The state of the art for poly-
phonic SED, trained using strong labels, was proposed recently
in [20], where log mel-band energy feature was used along with
a stacked convolutional and recurrent neural network and evaluated
on multiple datasets. Similar stacked convolutional and recurrent
neural network has also been shown to outperform state of the art
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methods in audio tagging tasks [9, 10]. Motivated by the perfor-
mance of this method in SED and audio tagging, in this paper, we
propose to extend the method to perform both SED and audio tag-
ging together, given only the audio and its respective weak labels.
In particular, we use the log mel-band audio feature extracted from
the audio and extend the stacked convolutional and recurrent neural
network to predict two outputs sequentially, the strong followed by
the weak labels. To train the proposed network we generate dummy
strong labels by replicating the weak labels as many times as the
number of frames in the audio input feature. We further propose to
control the information that the network learns by separately scaling
the loss calculated in the weak and strong prediction layers.

Networks similar to the proposed stacked convolutional and
neural network are the current state of the arts for audio tag-
ging [9, 10]. This shows that the architecture is capable of learn-
ing the relevant information in temporal domain and mapping it to
active classes. In this paper, we show that the proposed training
scheme can extract this temporal information that the network is
learning in the intermediate layers and can be used as strong labels.
In comparison to previous works [15, 16], the proposed method sup-
ports higher time resolution for strong labels by its inherent design.

The feature extraction and the proposed network is described in
Section 2. The dataset, metric and evaluation procedure is discussed
in Section 3. Finally, the results and discussions of the evaluation
performed are presented in Section 4.

2. METHOD

Figure 1 shows the overall block diagram of the proposed method.
The log mel-band energy feature extracted from the audio is fed to a
stacked convolutional and recurrent neural network, which sequen-
tially produces the strong labels followed by the weak labels.

Audio features are calculated using overlapping windows on the
input audio of length 10-seconds, resulting in T frames of the fea-
ture. The proposed neural network maps these features into strong
labels first, and further, the strong labels are mapped to weak labels.
For an input of T frames, and a total number of sound classes C in
the dataset, the network predicts C for each of the T time frames as
strong label output and just C as weak label output. The predicted
outputs for each of the sound class is in the continuous range of [0,
1], where one signifies the presence of the sound class and zero the
absence. The details of the feature extraction and the network are
presented below.

2.1. Feature extraction

Log mel-band energy (mbe) is extracted in 40 ms Hamming win-
dows with 50% overlap. In total 40 mel bands are used in the 0-
22050 Hz range. For a given 10 second audio input, the feature
extraction block produces a 500×40 output (T = 500).

2.2. Neural network

The input to the proposed network is the T × 40 mbe feature as
shown in Figure 1. The local shift-invariant features of this input are
learned using CNN layers in the beginning. We use a 3×3 receptive
field and pad the output with zeros to keep the size same as input in
all our CNN layers. The max-pooling operation is performed along
the frequency axis after every layer of CNN to reduce the dimension
to T × 1×N , where N is equal to the number of filters in the last
CNN layer. We do not perform max-pooling along the time axis
to preserve the input time resolution. The CNN layers activation
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Figure 1: Stacked convolutional and recurrent neural network for
learning strong labels from weak labels.

is further fed to a bi-directional gated recurrent units (GRU) with
tanh activation to learn the long-term temporal structure of sound
events, followed by time distributed fully-connected (dense) layers
to reduce the feature-length dimensionality. The time resolution of
T frames is unaltered in both the GRU and dense layers. Since
we have to predict multiple labels simultaneously, we use sigmoid
activation in the last dense layer. This prediction layer outputs the
strong labels present in the input audio, and we refer to this as strong
output in future. The dimensions of the strong labels are T ×C. We
calculate the strong label loss on this output. Further, we reduce the
activation dimensionality and remove the framing information using
dense layers and map it to the C weak labels present in the audio.
We refer to this weak label prediction layer as weak output in future
and calculate the weak label loss on its output. The total loss of the
network is then calculated as the weighted sum of strong and weak
losses.
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During the training, the loss at weak and strong outputs was
weighed differently to facilitate learning from one output more than
the other. In other words, during training, the weak labels along
with the weighting scheme help control the learning of strong labels.
On the other hand, during testing, the weak labels are obtained from
the predicted strong labels.

Batch normalization [21] is performed on the activations of ev-
ery CNN layer. We train the network for 1000 epochs using binary
cross-entropy loss function for both the strong and weak outputs,
and Adam [22] optimizer. Early stopping was used to reduce the
overfitting of the network to training data. The training was stopped
if the sum of the error rate of strong labels and F-score of weak la-
bels (see Section 3.2) referred as the training metric in future did not
improve for more than 100 epochs. We used dropout[23] after ev-
ery layer of the network as a regularizer to make the training generic
and work on unseen data. The implementation of the network was
done using Keras [24] with Theano [25] as backend.

3. EVALUATION

3.1. Dataset

The method is evaluated using a subset of the recently released Au-
dioset data by Google [8]. This subset was organized as part of
a challenge in the Detection and Classification of Acoustic Scenes
and Events (DCASE) [26].

The dataset consists of a training, testing and evaluation split.
The training split consists of 51,172 recordings, and the testing split
consists of 488 recordings. All recordings are of 10-second length,
monochannel and sampled at 44100 Hz. All these recordings have
been collected from publicly uploaded Youtube videos as explained
in [8]. Different methods trained on this training and testing split
were benchmarked using the unseen evaluation split of 1103 record-
ings at the DCASE 2017 challenge [26].

The dataset contains 17 labels in total and each recording can
have more than one label. Strong labels are provided only for the
testing split, while weak labels are provided for both the splits. In
order to train our network, we need strong labels in the training data
as well. We generate this by replicating the weak labels for every
time frame of the audio and use them as strong labels.

3.2. Metric

We evaluate our method in a similar fashion as the challenge [26].
Evaluation are performed individually on the weak and strong label
predictions.

The weak labels are evaluated by calculating the total num-
ber of recalls (R), its respective precision (P ) and the F-score as
R = TP / (TP + FN), P = TP / (TP + FP ) and F =
2 · P ·R/ (P +R) respectively. Where, true positives (TP ) is the
number of times the method correctly predicted the ground-truth
label. False positives (FP ) is the number of times the method pre-
dicted incorrectly the ground-truth labels. False negative (FN ) is
the number of times the method did not predict a ground-truth label.

The strong labels are evaluated using a segment based F-score
and error rate (ER) as proposed in [27]. According to which the
F-score is calculated as

F =
2 ·

∑K
k=1 TP (k)

2 ·
∑K

k=1 TP (k) +
∑K

k=1 FP (k) +
∑K

k=1 FN(k)
, (1)

where TP (k), FP (k) and FN(k) are the true positives, false pos-
itives and false negatives respectively calculated for each of the K
segments. The ER is calculated as

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)∑K

k=1 N(k)
, (2)

where N(k) is the total number of labels active in a given segment
k. S(k), D(k) and I(k) are the substitutions, deletions and inser-
tions respectively measured for each of the K segments as S(k) =
min(FN(k), FP (k)), D(k) = max(0, FN(k) − FP (k)) and
I(k) = max(0, FP (k)− FN(k)).

We use a segment length of one second for our strong label
metrics. The ideal F-score is 100 and ER is zero.

3.3. Baseline

The baseline method for the dataset is provided by [26]. It is a basic
method to provide a comparison point for other methods using the
dataset. This baseline method uses mbe as the audio feature. The
network used is a fully-connected one with two hidden layers, each
with 50 units and 20% dropout, followed by a prediction layer with
as many sigmoid units as the number of classes in the dataset. A
context of five frames of the audio feature is used for training the
network along with binary cross-entropy loss and Adam optimizer.
The evaluation metric scores for the baseline method are shown in
Table 1. The network is trained by replicating the weak labels as
many number of times as the number of frames in the input audio
feature. During testing, the weak labels are obtained outside the
network by identifying the sound events active in the strong labels.

3.4. Evaluation procedure

The stacked convolutional and recurrent neural network is trained
with mbe as input, the weak labels provided in the dataset as weak
output and the strong labels generated by replicating weak labels
for each time frame as strong output.

Given that the data is huge and the hardware has memory con-
straints, the training time can be long (about 1800 s/epoch on our
hardware). We cannot perform an extensive hyperparameter search
in the limited time, hence we start with a similar network configura-
tion as in [7], and perform a random search [28] by varying the num-
ber of units/filters in each of the layers until no under or over-fitting
is observed while having a strong training metric. Since the dataset
is large and is uploaded by different users, we assume that there will
be enough variability and hence do not use any regularizer. The best
configuration with highest training metric is as shown in Figure 1.
This configuration has around 218,000 parameters. Other configu-
rations with higher number of parameters, up to 2,000,000, did not
show any substantial improvement over the chosen configuration.

On finalizing the network, in order to be sure of our assump-
tion that the high variability in data will not result in an over-fitting
model, we experiment using dropout for each layer in our network
as a regularizer and vary it in the set of {0.05, 0.15, 0.25, 0.5 and
0.75}. We use the same dropout for all layers in this study.

The weights for the two prediction layers were experimented
with different combinations in the logarithmic set of {0.002, 0.02,
0.2, 1}. The number 0.002 is motivated from the ratio of the to-
tal number of time frames for the weak label (1) to the number of
frames for the strong label (500).
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Weak labels Strong labels
Dropout P R F ER F
Baseline [26] 12.2 14.1 13.1 1.02 13.8
0.05 44.6 37.8 40.9 0.86 38.6
0.15 47.5 39.7 43.3 0.84 38.8
0.25 43.0 35.0 38.6 0.86 33.8
0.5 21.5 17.3 19.2 0.99 8.6
0.75 12.3 9.9 11.0 1.15 8.0

Table 1: Evaluation metric scores for weak and strong labels for
different dropout values.

4. RESULTS AND DISCUSSION

The evaluation metric scores for weak and strong labels for different
dropout values tried are compared in Table 1. The best training
metric of 43.3% F-score for weak labels and 0.84 ER for strong
labels was achieved with 0.15 dropout for the proposed network.
This study was performed by having the same weight of one for
weak and strong outputs during training. In comparison with the
baseline [26] score of 1.02 ER for strong labels and 13.1% F-score
for weak labels, this is a significant improvement.

We used the above-estimated dropout of 0.15 and studied how
the network learns when provided with different weights for weak
and strong outputs and present the results in Table 2. For example,
from the first row of the table, the loss at strong output was scaled
with 0.002 while the loss at weak output was unscaled. Since the
strong labels for training were generated by replicating the weak
labels, they are not the actual true labels, hence by intuition, we
assumed higher weighting for weak labels will give better training
metric. From experimentation, it was seen that the best training
metric was actually obtained by using the same weight of one for
both the weak and strong outputs. Another interesting observation
is that the ER and F-score for strong labels improve when strong
output is given more weight than the weak output, even though the
strong labels used while training is ‘weak’ in the sense of correct-
ness. On the other hand, this also results in poor metric for weak
labels.

We analyzed the predicted labels of our configuration with an
equal weight of one for weak and strong outputs which achieved the
best training metric. Among the weak labels, the vehicular sound
events - train and skateboard, warning events - fire engine siren and
civil defense siren were seen to have the highest F-scores of over
60%. On the other hand, sound events - ambulance siren, car alarm,
car passing, reverse beeps, train horn had zero F-score. The same
sound events and the trend were observed for strong labels.

In order to understand what our method is learning, we visual-
ized the activations in the first convolutional layer of the network for
a given output class. The visualizations are done using the saliency
map [29] approach implementation in keras-vis [30]. The saliency
map is the gradient of output class with respect to the input fea-
ture. An example of such visualization is shown in Figure 2 for the
recording ‘–jc0NAxK8M 30.000 40.000’ in the test dataset. The
top and center sub-plots are the activations of the first convolutional
layer for the strong and weak output of sound class ‘car’. The bot-
tom subplot shows the ground truth marked in red dotted line over
the input mbe feature. We see from the activation map of both
strong and weak heat maps that the network is actually learning
the sound event from a relevant time period in the mbe feature.

Strong
Weight

Weak
Weight

Weak labels Strong labels
P R F Fch ER F ERch Fch

0.002 1 44.9 37.0 40.5 1.38 10.9
0.02 1 44.2 36.5 40.0 1.13 17.0
0.2 1 47.5 39.6 43.2 46.6 0.84 38.1 0.80 48.3
1 1 47.5 39.7 43.3 45.5 0.84 38.8 0.81 47.9
1 0.2 47.3 39.5 43.0 44.5 0.84 38.6 0.82 48.9
1 0.02 25.5 20.6 22.8 0.81 41.1
1 0.002 20.5 16.5 18.3 26.3 0.81 42.4 0.79 49.0

Table 2: Evaluation metric scores for different combinations of
weights for strong and weak label loss. The scores with subscript ch

represents the challenge results.
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Figure 2: Visualization of the activations in the first layer of CNN
for strong (top) and weak (center) prediction of sound event class
‘car’ in ‘–jc0NAxK8M 30.000 40.000’ recording. The bottom
plot shows the input to the network, the log mel-band feature of
the recording, where the sound event class is active in the region
bounded by the red dotted line.

4.1. DCASE 2017 challenge results

The results of the proposed method on the evaluation split of
DCASE 2017 challenge [26] is presented in Table 2. Four systems
with different strong and weak output weighting were chosen based
on their performance on test split. Similar trend of better strong
label score when strong output is weighed more was observed on
evaluation data (ERch = 0.79) as well. In comparison, [31] obtained
the best weak label F-score of 55.6% and [32] obtained the best
strong label error rate of 0.66.

5. CONCLUSION

The task of learning temporal information of sound events in an
audio recording, given only the sound events existing in the audio
without the time information is tackled in this paper. A stacked
convolutional and recurrent neural network architecture with two
prediction layer outputs and a training scheme was proposed in this
regard. This network was trained using different weights for the
loss calculated in the two prediction layers. Even though the strong
labels used for training were just repeated weak labels, it was ob-
served that the network learned the relevant strong labels correctly
when the weighting for the two prediction layers was equal. This
evaluation was carried out on a publicly available dataset of 155
hours duration. An error rate of 0.84 for strong labels and F-score
of 43.3% for weak labels was achieved on the test data.
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