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ABSTRACT

There is a rising interest in monitoring and improving human well-
being at home using different types of sensors including micro-
phones. In the context of Ambient Assisted Living (AAL) persons
are monitored, e.g. to support patients with a chronic illness and
older persons, by tracking their activities being performed at home.
When considering an acoustic sensing modality, a performed activ-
ity can be seen as an acoustic scene. Recently, acoustic detection
and classification of scenes and events has gained interest in the sci-
entific community and led to numerous public databases for a wide
range of applications. However, no public databases exist which
a) focus on daily activities in a home environment, b) contain ac-
tivities being performed in a spontaneous manner, c) make use of
an acoustic sensor network, and d) are recorded as a continuous
stream. In this paper we introduce a database recorded in one liv-
ing home, over a period of one week. The recording setup is an
acoustic sensor network containing thirteen sensor nodes, with four
low-cost microphones each, distributed over five rooms. Annota-
tion is available on an activity level. In this paper we present the
recording and annotation procedure, the database content and a dis-
cussion on a baseline detection benchmark. The baseline consists
of Mel-Frequency Cepstral Coefficients, Support Vector Machine
and a majority vote late-fusion scheme. The database is publicly
released to provide a common ground for future research.

Index Terms— Database, Acoustic Scene Classification,
Acoustic Event Detection, Acoustic Sensor Networks

1. INTRODUCTION

There is a rising interest in smart environments to enhance the hu-
man experience and/or quality of life of its inhabitant. Such a sys-
tem aims to understand the home scene to provide smart function-
ality, e.g. security, health monitoring [2] and entertainment using
different types of sensors including microphones. In the context
of Ambient Assisted Living (AAL) persons are monitored, e.g. to
support patients with a chronic illness and older persons, by track-
ing their activities being performed at home [3, 4, 5, 6].
In order to make a smart home capable to automatically anticipate to
forthcoming scenarios some form of sensing capabilities need to be
available. Numerous sensor modalities have been investigated rang-
ing from wearable [7] to contact-less sensors [8]. Existing research
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has been focussed either on a single modality or on the fusion of
multiple modalities [6]. Compared to other modalities, microphone
sensors are rarely used but contain highly informative data which
can be exploited for multiple tasks [5]. Over the past decades, inte-
grated components containing wireless radios and sensors are get-
ting smaller in size, while maintaining computational power. This
has led to using a network of sensors, which increases spatial sam-
pling resolution. Therefore, this work focusses on using an Acous-
tic Sensor Network (ASN).
Another vital part of a smart home are the models that translate the
data stream, acquired by the sensor(s), to information which can be
used for a certain task. The task considered here is to detect an ac-
tivity being performed, similar to the work in [3, 4, 5, 6]. When
considering an acoustic sensing modality, an activity can be seen as
an acoustic scene. The acoustic sensing literature has mainly cov-
ered the problems of Acoustic Event detection (AED) and Acoustic
Scene Classification (ASC). An acoustic event is defined as a sin-
gle consecutive event originated from a single sound source, e.g. a
hand clap or a door knock. The ensemble of multiple events cre-
ate a acoustic scenes describing a certain environment (e.g. a park
or a living room) or, relevant to this paper, an activity being per-
formed by a person (e.g. cooking or watching TV). Both the AED
and ASC problems target the interpretation of the acoustic data.
The rising interest in these problems has led to numerous public
databases for a wide range of applications. The NAR dataset con-
tains 41 sound events recorded by a humanoid robot Nao in a home
environment [9]. The data used for the CLEAR 2006 and 2007
evaluations contain meeting room events collected by multiple mi-
crophones [10]. The DARES-G1 database contains annotations of
sound events in different sound scenes, e.g. street and home [11].
The LITIS Rouen Audio Scene dataset [12], DCASE 2013 and 2016
databases [13, 14] consist of (binaural) recordings of events and/or
scenes in public areas, e.g. office and park. The Multimodal subset
of the SWEET-HOME database consists of recordings of daily ac-
tivities performed by 21 different users leading to 26 hours of data.
The recording setup consists of 7 microphone sensors, along with
other sensor modalities, deployed in a smart home [6].
However, current databases do not possess all characteristics needed
for our purposes: a) data collected in a home environment, b) activi-
ties being performed in a spontaneous manner, c) acquisition system
based on an ASN, d) continuously recorded, and e) containing the
activity when no person is present. Besides needing large databases
to obtain accurate models and for algorithm validation, reference
databases are important in algorithm development and comparison
between algorithms.
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The main contributions of this paper are a) introducing a database,
named ”SINS”, of real-life recordings in a home environment us-
ing an ASN and b) providing a baseline detection benchmark as a
reference to future work using this database. The paper is orga-
nized as follows: Section 2 introduces the recording environment
and sensing hardware. Sections 3 presents the database content and
recording procedure. This includes statistics about its content and
how the annotation was performed. Section 4 describes the baseline
detection benchmark and evaluation procedure. Section 5 shows the
performance of the baseline along with an analysis. Finally, Section
6 presents conclusions and future work.

2. RECORDING ENVIRONMENT AND SETUP

The database was collected in a vacation home with a floor area of
50 m2. The home consisted of five different rooms: a combined liv-
ing room and kitchen, bathroom, toilet, bedroom and hall. Thirteen
sensor nodes, each containing four microphones were distributed
uniformly over the five rooms as indicated by Fig. 1. Details of
the sensor’s exact locations and height can be found in [15]. The
sensor node has a modular design equipped with low-power audio
sensing, audio processing and wireless capabilities [16]. The sen-
sor node configuration used in this setup is a control board to-
gether with a linear microphone array. The control board con-
tains an EFM32 ARM cortex M4 microcontroller from Silicon Labs
(EFM32WG980) used for sampling the analog audio. The mi-
crophone array contains four Sonion N8AC03 MEMS low-power
(±17µW) microphones with an inter-microphone distance of 5 cm.
Although not used in this work, the setup can be used for sound
source localization [16]. The sampling for each audio channel is
done sequentially at a rate of 16 kHz with a bit depth of 12. The ac-
quired data is sent to a Raspberry Pi 3 for data storage. The data is
stored in chunks of one minute and timestamped. Timestamps were
obtained based on an NTP protocol for rough synchronization, be-
tween the sensor nodes, with a sample accuracy of ∼500 ms. For
algorithms demanding a more precise synchronization, an internal
counter value of the control board is stored. The value was reset-
ted every second by a GPS/Clock module. Using these counter
values, a more precise synchronization (sample accuracy approx-
imately ∼25 µs) could be obtained using interpolation techniques.
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Figure 1: Floor map of the recording environment.

Room Activity Nr. ex. duration (min.)

L
iv

in
g

ro
om

Phone call 22 8.17±13.73
Cooking 19 16.62±9.49

Dishwashing 15 6.37±1.49
Eating 19 7.78±4.27
Visit 9 13.3±12.11

Watching TV 13 155.38±93.28
Working 49 31.24±39.33

Vacuum cleaning 13 4.79±2.14
Other 200 0.75±0.95

Absence 72 66.37±130.30

B
at

hr
oo

m

Drying with towel 10 1.67±0.28
Shaving 13 1.91±1.46

Showering 10 6.11±2.38
Toothbrushing 19 1.41±0.25

Vacuum cleaning 9 0.87±0.59
Other 75 0.42±0.4

Absence 35 248.56±263.62

H
al

l Vacuum cleaning 9 3.31±1.11
Other 164 0.36±0.22

Absence 175 50.17±102.52

To
ile

t Toilet visit 21 4.74±3.24
Vacuum cleaning 7 0.53±0.07

Absence 31 282.75±263.19

B
ed

ro
om

Dressing 28 1.53±1.10
Sleeping 7 348.43±130.73

Vacuum cleaning 7 1.04±0.27
Other 22 0.27±0.23

Absence 22 122.28±157.43

Table 1: Recorded activities for each room.

3. DATABASE CONTENT AND RECORDING
PROCEDURE

One person lived in the environment for a continuous duration of
one week. In order to have an as realistic as possible data record-
ing there was no predefined set of scenarios that were simulated
by some actor. Consequently, the recorded scenarios included be-
ing absent (e.g. getting groceries and going for a walk) or even
receiving visitors. Although there was no restriction on the activi-
ties being performed, the number of activities that were labeled was
limited as indicated in Table 1. In total 16 different activities were
annotated in five different rooms. Table 1 lists the different activi-
ties along with the amount of examples and the mean and standard
deviation of the duration of all examples for each room. Most of the
activities are self-explanatory, except for ”Working” and ”Other”.
”Working” contains recordings of the person doing work on a com-
puter. The activity ”Other” represents the presence of a person
when not doing any activity of the ones listed in Table 1. Examples
of recordings that are included in the ”Other” activity are transi-
tions between activities or the time between entering the room and
starting an activity. In case of the Living room also sitting on the
sofa or any other activity not listed in Table 1 was assigned to the
”Other” category. In the case of the Hall this refers to crossing be-
tween rooms. Overall the database is strongly unbalanced, which
indeed reflects the imbalance of different activities in daily life. In
the case of the Living room, ”Absence” and ”Watching TV” are a
factor 10 to 30 times larger in terms of total duration than the short-



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

est activities ”Vacuum cleaning” and ”Other”. This ratio is even
larger for the other rooms.
The annotation was performed in two phases. First, during the data
collection a smartphone application was used to let the monitored
person annotate the activities while being recorded. The person
could only select activities listed in Table 1. The application was
easy to use and did not significantly influence the transition between
activities. Secondly, the start and stop timestamps of each activity
were refined by using our own annotation software. In [15] more
details are available on how these boundaries were chosen. During
data collection we noticed occasional sensor node failure on two
nodes. These were carefully annotated as well.
Postprocessing and sharing the database involves privacy-related as-
pects. Besides the person living there, multiple people visited the
home. Also during the activity ”Phone call”, one can partially hear
the person on the other end. A written informed consent was ob-
tained from all participants. The database and annotation are pub-
licly available [15].

4. DETECTION BENCHMARK

The provided baseline is adopted from earlier work on a similar
problem [4]. It consists of a Mel-Frequency Cepstral Coefficients
(MFCC) feature extraction and a Support Vector Machine (SVM)
based classifier. Each sensor node performs feature extraction and
detection locally on the first out of four microphone signals. The
obtained class label is fused centrally using majority vote to obtain
a final class label. A decision is obtained for each room separately.
In case of the Living room and Bedroom, decisions from respec-
tively eight and two different sensor nodes are combined. In the
other rooms no fusion is needed.
First, in each sensor node, the audio stream is transformed by a
Short-Time Fourier Transform with a 30 ms hamming window and
a 10 ms step size. Then, a mel-scale filterbank is used of length
26 with a frequency range of 500 to 8000 Hz. The mel-features
are transformed to a lower dimension using Discrete Cosine Trans-
form. The first 14 coefficients were kept, including the 0th order
coefficient. Delta (∆) and acceleration (∆∆) coefficients were also
computed, based on a window length of 9 MFCC frames. Sub-
sequently, the MFCC∆/∆∆ feature vector stream was segmented
using a sliding window of 15 s and a step size of 10 s. The window
size is chosen based on the shortest average duration in Table 1. The
mean and standard deviation are calculated for each feature dimen-
sion in the entire segment of 15 s which results in a total feature
vector of length 84.
Finally, these features serve as an input to the model training and
prediction phase of a SVM. SVM is a binary classifier that con-
structs a separating hyperplane such that the margin between two
classes is maximized. For problems that are not linearly seper-
atable, a kernel maps the original space to a higher-dimensional
space to make the separation easier. The kernel used here is the
well-known radial basis function (RBF) kernel. To expand SVM to
multi-class classification a 1-vs-1 coding scheme is used. The SVM
hyper-parameters, kernel-bandwidth of the RBF and regularization
parameter were tuned based on the training set [17]. Due to class
imbalance, the contribution of each example in the model training
phase is weighted based on class size.
The label assigned to the final feature vector is the active class at
the middle of the segment window. Estimates of the current class
therefore are based on non-causal information which introduces a
delay of 7.5s in a practical setup. The feature vectors were grouped

based on which example (Table 1) it belongs to. These groups were
randomly assigned to a fold to be used for 4-fold cross-validation.
F1-score is used as a metric which does not take into account class
imbalance. F1-score’s are obtained for each class separately and
averaged to obtain the overall F1-score.

5. RESULTS AND DISCUSSION

Results are analysed using normalized confusion matrices (nCM).
For each room a confusion matrix is normalized by the marginals
of either the column or the row. This provides insights into the
precision and recall scores for each class and how the confusion is
distributed. The precision is interpreted as how often the system is
correct when it estimates a certain class, while recall provides in-
sight into how often the system is correct with respect to the ground
truth. In Fig. 2a classes are given on the y-axis. The precision (%)
of each class is shown on the diagonal. The off-diagonals show the
confusion with respect to a class on the diagonal in the same col-
umn. Therefore, the columns sum to 100%. For practical consider-
ations, the values are rounded to the nearest integer. For example, in
Fig. 2a, the class ”Working” has a precision of 59% and is mostly
confused with the class ”Absence”. The analysis is the same for the
recall, where confusion should also be looked up vertically in the
same column.
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Figure 2: Living room - (a) precision nCM - (b) recall nCM

Fig. 2 shows the output for the Living room. The averaged F1-
score over all classes is 82.3±2.2%. The worst performing class
is ”Other” which gets confused with ”Working” and ”Absence”.
This seems logical because these three classes contain a great
amount of silence. The class ”Absence” contains audio when ”Vac-
uum cleaning” is active in other rooms. The rooms in the vaca-
tion home were poorly acoustically isolated from each other and the
door between Hall and Living room was partially opened due to the
electricity cable of the vacuum cleaner. This, however, did not lead
to high confusion between the two classes. The best performing
classes are ”Absence”, ”Watching TV”, ”Vacuum cleaning” and
”Cooking” with F1-scores around 95%.
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Figure 3: F1-score versus amount of nodes used in the Living room

Fig. 3 shows the F1-score with respect to the amount of nodes used.
All possible sets of node combinations are tested. The best and
worst set is shown together with the averaged performance over all
sets. The gain in F1-score, between using a single sensor or eight
sensors, ranges between 3.4% and 17.3% depending on which sen-
sor node is selected. On average the gain is 8.5%.
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Figure 4: Bathroom - (a) precision nCM - (b) recall nCM

Fig. 4 shows the output for the Bathroom. averaged F1-score over
all classes is 84.8±2.0%. Similar trends are noticable here com-
pared to the Living room. The classes ”Shaving”, ”Showering”
and ”Absence” perform above 95%. The worst performing classes
are ”Drying with towel” and again ”Other”. Most of these classes
are, as expected, confused with ”Absence” and ”Other”.
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Figure 5: Hall - (a) precision nCM - (b) recall nCM

The output for Hall is shown in Fig. 5. The averaged F1-score
over all classes is 89.1±1.9%. The recall of class ”Other” (53%)
is considerably lower than the precision (98%). This shows that in
case the system detects the class ”Other” is active it is 98% correct,
while when it should be ”Other” is often confused with the class
”Absence”. This could be due to the relatively short duration of

the class ”Other”. The average duration is 21.6 s (Table 1), while
detections are based on segments of 15 s. In the case of Hall, the
class ”Other” only contains transitions between rooms.
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Figure 6: Toilet - (a) precision nCM - (b) recall nCM

Similar trends are observable for the results of Toilet in Fig. 6. The
score of ”Vacuum cleaning” is lower compared to other rooms due
the shorter duration (31.8 s on average). The precision of ”Toilet
visit” (78%) is much higher than the recall (48%). A toilet visit
is often without making any audible audio, causing the confusing
with ”Absence” for the recall nCM. When an event occurs however,
it shows that these events often are recognized correctly leading to
relatively high score. F1-score over all classes is 79.0±8.6%.
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Figure 7: Bedroom - precision and recall CM

The output for Bedroom is shown in Fig. 7. The overall F1-score
over all classes is 52.5±3.5%. This is the lowest overall F1-score
over all rooms, as expected due to the class ”Sleeping”. The classes
”Dressing”, ”Sleeping”, ”Other” and ”Absence” are often con-
fused between eachother. The only class performing above 90% is
”Vacuum cleaning”.

6. CONCLUSIONS

In this paper we a) introduced the ”SINS” database, a real-world
database for detection of daily activities in a multi-room home en-
vironment using an acoustic sensor network and b) provided a first
analysis on the detection performance using a benchmark system.
The best performing room was the Hall with an F1-score of 89.1%.
The worst performing room is the Bedroom with an F1-score of
52.5%. Both the database and annotation is available for download
[15]. Future work will focus on a) improving the benchmark system
and b) extending this database with isolated acoustic events and an-
notations on a sound event level using the acoustic scene database.
For both subsets it is foreseen to also provide a benchmark and make
the data public.
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