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ABSTRACT
This study describes a convolutional neural network model submit-
ted to the acoustic scene classification task of the DCASE 2017
challenge. The performance of this model is evaluated with dif-
ferent frequency resolutions of the input spectrogram showing that
a higher number of mel bands improves accuracy with negligible
impact on the learning time. Additionally, apart from the convolu-
tional model focusing solely on the ambient characteristics of the
audio scene, a proposed extension with pretrained event detectors
shows potential for further exploration.

Index Terms— acoustic scene classification, spectrogram, fre-
quency resolution, convolutional neural network, DCASE 2017

1. INTRODUCTION

The area of environmental sound classification has recently expe-
rienced a significant increase in the quantity of performed studies.
One of the main driving factors in 2016 was the organization of the
first DCASE workshop [1], complemented by an open challenge
focusing on the detection and classification of acoustic scenes and
events. This unique opportunity enabled researchers to exchange
ideas and evaluate various approaches on a common set of tasks and
datasets, a valuable initiative which continues in 2017 with a second
installment of the workshop [2].

Looking at previous submissions to this challenge, a clear pic-
ture emerges on how diverse the methods employed to tackle these
tasks can be. In 2013, when the very first DCASE challenge [3] was
organized, although most approaches used a support vector machine
(SVM) classifier, the input frames spanned a vast range of features:

• mel-frequency cepstral coefficients (MFCC) [4, 5, 6],
• mel spectrograms processed through a sparse RBM extractor [7],
• statistics from a cochleogram based on a tone-fit algorithm [8],
• responses of modulation tuned filters (2D Gabors) [9],
• visual features (HOG) computed on a constant-Q transform [10].

At the same time, other teams evaluated the usefulness of hid-
den Markov models (HMM) [11], an i-vector approach combined
with MFCCs [12], bagging of decision trees with MFCCs and
wavelets [13] and a random forest classifier working on an embed-
ding through dissimilarity representation [14].

In contrast, the DCASE 2016 challenge saw an emergence of
deep learning techniques with numerous systems shifting to deep
neural networks (DNN) [15, 16, 17, 18], convolutional neural net-
works [19, 20, 21, 22, 23, 24], recurrent models [25, 26, 27, 28, 29]
and their fusions with other approaches like the i-vector [30]. Al-
though MFCCs were still widely encountered as input features in

The source code for this study can be found at:
https://github.com/karoldvl/paper-2017-DCASE

sound event detection, more low-level representations such as mel
band energy and various forms of spectrograms were much more
common in the acoustic scene classification task.

When developing models relying on spectrograms as their in-
put, one of the decisions that has to be made is the resolution of the
data generated in the preprocessing step. What should it be? One
obvious response is: “the higher, the better”. As visualized by Fig-
ure 1, choosing a more fine-grained representation means less infor-
mation is being lost at the very beginning and this should hopefully
allow for more nuanced differentiation between similar training ex-
amples in later stages. However, there are three countervailing is-
sues that we have to take into consideration here.

First of all, although increasing the time and frequency reso-
lution of the employed representation may be desirable, the uncer-
tainty principle imposes a theoretical limit on how these two can be
combined. It is always a trade-off. Wide windows give good fre-
quency resolution, but their temporal resolution is affected for the
worse. Narrow windows behave in the opposite way.

One can counter this claim by stating that, theoretical limits
notwithstanding, in most cases it is still possible to maintain a tem-
poral resolution sufficient for an audio classification task while us-
ing wider windows. Even then, however, a practical aspect of re-
source constraints remains. Will the impact on memory and stor-
age requirements introduced by a higher resolution be acceptable in
a given application? Is a longer computation time, both in the pre-
processing and learning phase, really worth it? Especially in scenar-
ios combining real-time processing with deployment on low-power
devices these issues can become crucial.

Finally, dimensionality reduction of the input data is a proven
way to facilitate learning. Looking from this perspective, a single
audio frame of 10 milliseconds, sampled at 44.1 kHz, contains 441
datapoints in its raw form. On the contrary, MFCCs can succinctly
describe it with only a dozen of coefficients. With longer frames the
discrepancy will be even more pronounced. Therefore, a valid con-
cern arises whether a high-resolution spectrogram with hundreds
of frequency bands will not become an overkill that effectively im-
pedes efficient learning.

40 bands 60 bands 100 bands 200 bands STFT (1103)

Figure 1: A visual comparison of 3-second-long fragments of spec-
trograms with different frequency resolutions (first four use a mel
scale, the last one is a plain STFT).
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Evaluating related works in this area, it seems indeed that the
prevailing tendency is to limit the number of computed frequency
bands to less than 100. Although greater values can be occasionally
encountered (100 in [28], 128 in [31], 150 in [32] and even 1025
in [27]), 60 bands [20, 23] and 40 bands [17, 26, 29, 33] are the
dominant option. This would imply either that the gains potentially
achievable from a higher resolution are counterbalanced by other
negative factors, or that the issue is deemed, so far at least, only
tangential to the actual problem of model construction and has not
received much attention of itself.

This specific research question is the main motivation behind
this study. A thorough analysis of all the issues voiced in the in-
troduction is not possible in a scope of a short paper, so it will be
limited to an evaluation of a single submission to the acoustic scene
classification task of the DCASE 2017 challenge [2]. Nevertheless,
it will hopefully signal whether this problem could be worth inves-
tigating further in a more generalized manner.

2. EXPERIMENT SETUP

2.1. Task and dataset

The goal of the acoustic scene classification task proposed in the
DCASE 2017 challenge is to determine the context of a given
recording by choosing one appropriate label from a set of 15 prede-
termined acoustic scenes. For each scene, there are 312 audio seg-
ments in the development dataset with each segment having a length
of 10 seconds and a sampling rate of 44.1 kHz. The challenge or-
ganizers prearranged the development dataset into 4 folds for com-
parable cross-validation in such a manner that segments originating
from one physical location are contained in the same fold. The final
scoring of submitted systems is based on the fraction of correctly
classified segments from the evaluation dataset. Further informa-
tion about the recording and annotation procedure can be found in
the paper describing the dataset [34].

2.2. Data preprocessing

The first step of the proposed solution consists in converting all
the provided recordings into spectrograms with librosa v0.5.1 [35].
Mel spectrograms are created with an FFT window length of 50 ms
(2205 samples), hop length of 20 ms (882 samples), and a num-
ber of bands that is either 40, 60, 100 or 200, in all cases covering
a frequency range of up to 22050 Hz. Additionally, a plain STFT
spectrogram (1103 bands) is created with the same window and hop
length for comparison. Finally, the spectrograms are converted to
a decibel scale and standardized by subtracting the mean and divid-
ing by the standard deviation computed on a random batch of 1000
examples. In this manner, the resulting dimension of a 10-second-
long segment representation is b rows and 500 columns, where b is
the number of generated frequency bands.

During training, slight data augmentation is introduced by
a uniformly distributed offset of the start time of up to 1 second.
Moreover, in each case a randomly sized tail of the generated ex-
ample is replaced with a different segment belonging to the same
class, creating some additional variety in the training batches.

2.3. Model architecture

Most acoustic scenes can be conceptually described as an ensemble
of two distinct elements. The ambience layer consists of a nonde-
script theme recurring in the background with little to no change
(e.g. sound of a noisy street). Every now and then a more specific
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Figure 2: A schematic of the model with its ambience part and
a possible extension with a detector module.

event of a short-lived nature occurs (e.g. a book page being flipped
in a library). In many situations the background information alone
is quite sufficient for establishing an actual context with little ambi-
guity. However, browsing through the provided dataset and trying
to deduce how human perception copes with such a task, it seems
that in some cases very subtle clues (as the aforementioned page
flipping) are the key elements that drastically shift the expectations
between similar contexts (e.g. home and library).

Based on this observation, a natural question is whether a ma-
chine learning model incorporating such an assumption would be
advantageous. On the other hand, taking into consideration the high
accuracy of the baseline solution and the results of Mafra et al. [36]
where the authors indicate that good results can be obtained by rep-
resenting each recording with only a single averaged frame, it is
thus very likely that a good architecture should not be overly com-
plicated in this case.

Therefore, the system described in this work has a very simple
design, coming in two flavors depicted in Figure 2. The first vari-
ant is a three block convolutional network focusing on processing
the ambience content. Its first layer takes the whole input spectro-
gram (b × 500) and applies a convolution with a stride of 1, filter
size of b × 50 (i.e. over fragments of 1 second) and the number of
filters set at 100. The response is batch normalized and processed
through a LeakyReLU activation (α = 0.3) combined with dropout
(pdrop = 0.25). The second processing block is identical, except for
the filter size which in this case is reduced to 1 × 1, meaning that
there is no spatial convolution but only aggregation across feature
maps. The final layer consists of 15 convolutional filters of 1×1 and
a softmax activation that is computed separately for each step. For
training purposes, output probabilities are averaged with a global
pooling layer. However, during the prediction step no pooling is
performed, but instead these values are binarized with a threshold
of 0.5 and only then averaged over the whole time span, which is
equivalent to a majority vote.



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

0.70

0.75

0.80

0.85

Fold 1

amb40
amb60

amb100
amb200

STFT
detectors

dishes

Fold 2

0 100 200 300 400 500

0.70

0.75

0.80

0.85

Fold 3

0 100 200 300 400 500

Fold 4

Epoch

Va
lid

at
io

n 
ac

cu
ra

cy
(m

ov
in

g 
av

er
ag

e 
ov

er
 5

0 
ep

oc
hs

)

Figure 3: Comparison of validation accuracy for the evaluated sys-
tems achieved on the development dataset. Results are presented as
a moving average over 50 epochs for better clarity.

The second variant extends this model with a module that we
will further call a detector. An architecture of a detector is exactly
the same as the already described ambience part with the difference
that convolutional blocks use only 10 filters and the last layer con-
sists of a single convolutional unit with sigmoid activation that is
max-pooled over the whole time span. The rationale behind this
is that the output of such a network should signal whether a given
event (template match) has occurred anywhere in the whole record-
ing. The whole variant then combines the ambient module with
a predefined number of detectors by concatenating their output to
the input of the last convolutional layer (same global event detec-
tion value is repeated for each step of the ambient model).

Two remarks about the implications of such an architecture.
First of all, while we are using a “convolutional” designation for
this model, were it not for some subtle differences coming from the
use of normalization layers and joint training, it could be validly
understood as a simple multi-layer perceptron that is being applied
to consecutive frames of the input, an approach very similar to the
baseline implementation.

Moreover, by filling the first layer with filters of a very large
size, spanning the whole frequency range, we can limit the impact
of higher resolutions to this layer only. This means that the increase
in computation time is not that severe. The prospects here would be
much worse with networks stacking multiple layers of small-sized
filters, where such changes propagate in the output dimensions of
deeper layers, a drawback which should not be overlooked.

2.4. Training procedure

Before training, all model weights are initialized with a He uni-
form [37] procedure. Training is performed for 500 epochs with an
Adam optimizer (learning rate of 0.001, batch size of 32) and a cat-
egorical cross-entropy loss function. 400 segments are carved out
from the training fold as an additional holdout batch. The best per-
former on the holdout batch is retained as the final model, whereas
validation results are calculated on a completely separate fold as
provided by the organizers. Separate models are trained for each
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Figure 4: Confusion matrix of the submitted amb200 model (ambi-
ence only, 200 mel bands) combined over all folds of the develop-
ment set. The rightmost column presents class-wise accuracies.

combination of training and validation folds. A hierarchical learn-
ing method similar to the one reported in [17] was tentatively eval-
uated, however the difference achieved with the employed architec-
ture was not noticeable enough to warrant further investigation.

3. RESULTS

The main system presented in this work, codenamed amb, consisted
solely of the ambience processing module (left part of Figure 2).
Five variants of this model were evaluated, four using mel spectro-
grams with 40, 60, 100 and 200 frequency bands respectively and
one working on STFT spectrograms with 1103 bands (denoted as
STFT later on). Additionally, a model combining the amb200 vari-
ant with 15 independent detector modules was created (detectors).
The results of these models are depicted in Figure 3 and presented in
a numerical way in Table 1, while Figure 4 more specifically details
class-wise performance of the amb200 model.

The analysis of these results indicates that a higher number of
mel frequency bands quite uniformly improves the achieved vali-
dation accuracy. There is almost a 4 percentage point difference
between amb40 and amb200 variants, showing that, in this setup
at least, higher resolution models have a greater predictive capac-
ity. The STFT variant is on average comparable to amb200, it is
however underperforming in fold 4 and strongly outperforming in
fold 2. Taking into consideration the processing overhead (approx-
imate epoch processing time on a GTX 980 Ti card was 23 s for
amb40 up to 25 s for amb200 and 52 s for STFT) the amb200 vari-
ant is a clear winner.

Figure 5: First 20 filters learned by the initial convolutional layer of
the amb200 model (ambience only, 200 mel bands).
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beach bus cafe car city forest grocery home library metro office park resid. train tram

Figure 6: Synthetic examples of input patterns resulting in maxi-
mum output activation for a given class (pclass(X) = 1.0). Slight
contrast squashing was applied for presentation purposes.

On the other hand, a disappointing behavior of the detectors
model combines poor validation accuracy with very high training
time. It is quite evident that for this particular dataset the capacity
of such an architecture is too high and after 100 epochs of training
significant overfitting occurs. Therefore, an additional model dishes
is proposed. What is peculiar about it, it extends the amb200 model
with only a single detector. Moreover, this detector module is sepa-
rately pretrained on additional hand-annotations specifically created
for this purpose indicating the occurrence of specific events in the
cafe/restaurant scene that could be described as sounds involving
cups, plates, kitchenware etc. Unfortunately, due to time constraints
and the effort involved in creating a more complete annotation of the
dataset, it was not possible to evaluate a model with a broader range
of pretrained detectors. However, taking into consideration that ini-
tial results reported here hint at a possible improvement, it could be
an interesting further avenue for research.

Finally, trying to understand a bit better on what is going on
behind the scenes, we can see that the ambience model learns to be
a strong frequency discriminator as seen both by the convolutional
filters visualized in Figure 5 and examples of patterns that induce
the strongest activation for a specific class (Figure 6). This would
explain why a high frequency resolution of the input data might be
so important for this task. However, especially looking at Figure 6,
the perceptual differences are minuscule apart from some intricate
patterns of narrow frequency bands, so a real question is on what
is being learned. Is it actually the semantic differentiator between
different types of scenes? In some cases, like interiors of vehicles,
most probably yes. However, for classes such as home or library it
is quite possible that these specific frequency patterns concentrate
on what would be perceived by a human listener as recording arti-
facts. Further study would be required, but there is a high risk that
the resulting model would be prone to adversarial attacks.

Table 1: Results of the proposed systems.

System
Development

Final
Fold 1 Fold 2 Fold 3 Fold 4 1—4

amb40 79.4 (0.5) 77.7 (0.8) 76.7 (1.0) 81.4 (1.0) 78.8 —
amb60 81.3 (0.6) 76.3 (1.0) 75.8 (0.9) 81.5 (1.0) 78.7 62.0
amb100 81.1 (0.6) 77.5 (0.9) 80.6 (0.7) 83.4 (1.3) 80.7 67.7
amb200 80.9 (0.8) 80.2 (0.8) 83.0 (0.9) 85.6 (1.3) 82.4 70.6
STFT 81.1 (0.9) 83.6 (0.8) 81.4 (0.9) 83.4 (1.3) 82.4 —
detectors 78.7 (0.9) 78.1 (1.1) 78.6 (1.3) 80.8 (1.4) 79.1 —
dishes 80.3 (0.9) 81.4 (0.7) 82.6 (0.6) 86.6 (1.0) 82.7 69.6

Mean (standard deviation) of validation accuracies across 50 final epochs of
training on the development set and official evaluation results for submitted
models. Values in percentages.

4. CONCLUSION

This paper described a submission to the acoustic scene classifica-
tion task of the DCASE 2017 challenge based on a convolutional
neural network model specifically limited to focusing on the ambi-
ent characteristic of auditory scenes by average pooling responses
for consecutive fragments of the recording. Experiments completed
in this study showed that a very important determinant of the fi-
nal performance in this task is the frequency resolution of the in-
put representation being used, most probably due to the fact that
the network is learning a form of a frequency discriminating func-
tion. Therefore, increasing the number of mel bands up to 200, well
above what is most commonly encountered in related works, proved
to be most effective. At the same time, using plain STFT spectro-
grams with even higher number of bands did not provide additional
gains, while considerably increasing the computation time.

It is hard to tell in the scope of this work whether these results
could be generalized for other contexts (e.g. event detection), where
apart from the frequency content, changes in time also play a crucial
role. Concurrently, while the exact scope of the increase in the pro-
cessing time when employing different types of models is not clear,
a valid concern is whether the gains achieved will compensate for
the longer training time, especially when using deep convolutional
architectures with very small filters. This would have to be evalu-
ated on a case-by-case basis. Nevertheless, the aim of this study is
to underline that this hyperparameter should also be taken into con-
sideration, even if only to squeeze some additional performance out
of the very final model.
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