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ABSTRACT

With the increasing use of a high quality acoustic device to

monitor wildlife population, it has become imperative to develop

techniques for analyzing animals’ calls automatically. Bird sound

detection is one example of a long-term monitoring project where

data are collected in continuous periods, often cover multiple sites at

the same time. Inspired by the success of deep learning approaches

in various audio classification tasks, this paper first reviews previ-

ous works exploiting deep learning for bird audio detection, and

then proposes a novel 3-dimensional (3D) convolutional and recur-

rent neural networks. We propose 3D convolutions for extracting

long-term and short-term information in frequency simultaneously.

In order to leverage powerful and compact features of 3D convolu-

tion, we employ separate recurrent neural networks (RNN), acting

on each filter of the last convolutional layers rather than stacking

the feature maps in the typical combined convolution and recurrent

architectures. Our best model achieved a preview of 88.70% Area

Under ROC Curve (AUC) score on the unseen evaluation data in

the second edition of bird audio detection challenge. Further im-

provement with model adaptation led to a 89.58% AUC score.

Index Terms— bird sound detection, deep learning, 3D CNN,

GRU, biodiversity

1. INTRODUCTION

There has been growing interest to assess the wide-ranging impacts

on biodiversity currently occurring around the globe. With the rapid

decline in global wildlife populations due to environmental pollu-

tion, there has been a progressive effort over the years for monito-

ring vocalizing species as valid indicators of biodiversity. Monito-

ring the avian population in their habitats is one such effort since

birds are good ecological indicators of environmental changes [1].

For example, this enables researchers to obtain valuable informa-

tion such as habitat change, migration pattern, pollution, and dise-

ase outbreaks in the environments. Because birds play a crucial role

in the environment, considerable effort has been devoted to focusing

on the conservation of birds.

In order to collect data on a large spatio-temporal scale, ecolo-

gists often deploy acoustic monitoring devices to cover a large area

of the land. As a result, a large number of recordings are being

generated. These recordings, constituting many years of environ-

mental monitoring, cannot be analyzed manually. In this regard,

ecoacoustics research [2, 3] has become one of the “big data” rese-

arch areas and may benefit substantially from “big data” analysis.

Detecting bird sounds in audio recordings is one research problem

example where data are continuously collected from various sour-

ces in a wide range of locations and environments, including from

mobile phones [4]. This task can be extremely difficult to deal with

due to man-made noise (i.e., traffic, television) , weather noise (e.g.,

rain, wind) , non-bird calls, and the quality of recordings.

In recent years, deep learning techniques have revolutionized

the applicability of machine learning in speech, vision, and text pro-

cessing. Significant improvements in many classification tasks are

reported using deep architectures, where deep convolutional neu-

ral networks (CNN) have been used extensively in computer vision

tasks. Since CNN learn filters that are shifted in both frequency and

time, it addresses the limitation of deep neural networks (DNN),

which lacks both time and frequency invariance. The use of deeper

and more efficient CNN (e.g., GoogLeNet, ResNet, DenseNet) is

also becoming popular and has shown state-of-the-art performance

in object detection and image classification challenges [5, 6, 7]. The

use of CNN is also popular in audio classification and speech re-

cognition applications where audio signal is often converted into a

spectrogram and treated as an input image to CNN. Despite this,

bird sound data still pose a challenging problem for a deep learning

method. This is not only due to environmental noise but also the

complex structure and temporal modulations of bird songs [8, 9].

Our novel contribution in this paper is the extension of conven-

tional convolutional recurrent neural networks using 3-dimensional

(3D) convolutional architecture for bird sound detection. The 3D

CNN architecture has been employed in video processing applica-

tions such as human action classification [10], audio-visual mat-

ching [11], and recently text-independent speaker verification [12].

In this work, we use 3D CNN to capture both long-term and short-

term information in frequency from audio data stream. Also, 3D

CNN is assumed to produce powerful and compact features compa-

red to 2D CNN [13]. In order to receive the greatest benefit from

these features, we employ separate RNN, acting on each filter of the

last convolutional layers rather than stacking the feature maps in the

typical combined CNN and RNN architectures.

The rest of the paper is organized as follows. Section 2 dis-

cusses related work. Section 3 describes data and methods for bird

sound detection. Experimental results are presented and discussed

in Section 4 and 5, respectively. Finally, Section 6 concludes the

paper.

2. RELATED WORKS

Currently, the state-of-the-art results for bird sound detection, and

also recognition of birds are obtained with the use of CNN. Spe-

cifically, CNN can act as a feature extractor which is shown to be

superior to hand-crafted features in many classification tasks [14].

Thus, a mid-level representation of audio (i.e., a spectrogram) is

popular as an input feature since it contains high-dimensional infor-
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Figure 1: 3D-CNN architecture for bird sound detection. A 3D convolutional neural networks with three convolutional layers followed six

teen recurrent layers and at the end one fully connected (FC) layer followed by softmax output layer. Input is a stack of 2-second audio clip.

mation (e.g., channel, environment). Despite promising detection

results when using sophisticated classifiers such as CNN, state-of-

the-art results can only be obtained if CNN is tuned carefully. This

often requires domain knowledge and the interpretation of models

that are well suited to bird data. The typical workflow for large

scale bird sound detection and recognition using CNN consists of

spectrogram feature extraction from audio recordings, and model

training and evaluation. There is a considerable amount of work

involved in predicting the location of bird sound within the spectro-

gram. The aim is to remove background noise and extract only the

parts containing bird singing/calling [15]. This includes a spectral

enhancement stage and image processing heuristics to discard non-

bird sounds [16]. Even though noise reduction techniques may work

well for certain datasets, bird sound localization is still a challen-

ging task when there are dominant man-made noises (e.g., traffic,

human singing, vehicles) in the audio clip.

A variety of CNN architectures have been explored for bird au-

dio detection and recognition tasks. Very deep CNN networks such

as ResNet [6] and DenseNet [7] architectures typically achieve bet-

ter performance compared to the standard CNN model [17]. Ho-

wever, as shown in the previous BAD challenge, using a wide re-

ceptive field in a conventional CNN configuration can also achieved

state-of-the-art results (bulbul submission). Other notable deep le-

arning architecture employed in BAD challenge is the combination

of CNN and RNN architectures (CNN+RNN) [18, 19]. In this case,

the CNN is used for local feature extraction and the recurrent layers

to model the long-term dependencies. For example, [19] used bi-

directional RNN (BRNN) to process feature maps of the last CNN

layer and achieved 88.41% AUC measure on the evaluation data.

Data augmentation strategy (i.e., frequency and time shift) to im-

prove the generalization of the network is also employed by many

teams, albeit with marginal improvement [18]. We also tested our

proposed 3D-CNN+RNN in the previous BAD evaluation set (post-

challenge submission) and achieved 88.95% AUC score (without

data augmentation method), comparable to the official state-of-the-

art results published in the first challenge.

3. DATA AND METHODS

3.1. Datasets

Table 1: Bird audio detection challenge 2 statistics in the develop-

ment set [20].

Dataset present absent total

freefield1010 1,935 5,755 7,690

warblrb10k 6,045 1,955 8,000

BirdVox 10,017 9,983 20,000

Total 17,997 17,693 35,690

The bird audio detection challenge 2 used datasets released in

previous challenge with the addition of new datasets: (a) BirdVox

(BirdVox-DCASE-20k), and (b) Poland (PolandNFC), used only

for evaluation. Each audio clip is 10-second long and sampled at

44.1 kHz. The total number of audio recordings for development

and evaluation set are 35,690 and 12,620, respectively. The label

for development set is 1 if any bird sound is present, regardless of

the species, and 0 if none. The statistics of the development sets are

presented in Table 1.

3.2. Feature Extraction

We split 10-second audio clip into 5 × 2-second clips. The 2-

second length is based on empirical analysis [21]. A spectrogram

(from 2-second clip) computed from sequences of Short-Time Fou-

rier Transform (STFT) of overlapping windowed signals is used as

the sound representation. A signal is framed using a window of 20

ms (882 samples). The STFT analysis is carried out using a Ham-

ming window, 50% overlap, 1024 FFT bins by zero padding. Given

the audio signal s(t), the square of magnitude spectrum |S(n, f)| at

frame n and frequency f is computed. We constructed triangular-

shape filters linearly spaced in mel scale to convert a spectrogram to
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a Mel-spectrogram with the number of filters set to 80. The magni-

tude values are then converted into log magnitude. The input feature

shape for spectrogram is 5× 80× 200. The features were standar-

dized as input to 3D-CNN.

3.3. 3D convolutional recurrent neural networks

In essence, the 3D convolution is the extension of 2D convolution.

The 3D-CNN+RNN architecture proposed in this work consists of

3 convolutional layers. We use a receptive field of 3× 3× 3 follo-

wed by a max pooling operation for every convolutional layer. The

activation function is Rectified linear unit (ReLU). A batch norma-

lization layer [22] was employed for all the convolutional layers.

Dropout with rate of 0.5 was employed in convolutional layers. The

weights are initialized with Xavier initialization [23]. We employed

multiple gated recurrent units (GRU) modules [24] where each fe-

ature map of the last convolutional layer is fed to the GRU [25].

Hence, we had a total of 16 separate GRU modules for 16 filters

at the last convolutional layer output. We constructed 25 recur-

rent layers for each feature map, where 25 is the number of time

steps mapped from the 200 time steps in the original spectrogram.

We used recurrent networks with 32 GRU cells. The output for

each RNN (many-to-one configuration) is concatenated and then

fed into a fully connected layer. The combined 3D-CNN and RNN

are optimized jointly by employing backpropagation algorithm. A

softmax layer with two nodes is used (bird vs non-bird). The net-

work is trained using RMSProp optimizer [26] with momentum of

0.9 and initial learning rate of 10–3. We used batches of 8 trai-

ning example to train our models. The categorical cross-entropy

is used as a loss function. Tensorflow [27] is used to implement

the models. The code to reproduce the results is made available in

https://github.com/himaivan/BAD2.

4. EXPERIMENTS

4.1. Evaluation metric

The performance evaluation metric for bird sound classification is

reported in terms of Area Under the ROC curve (AUC) as suggested

in the challenge plan.

4.2. Baseline 2D CNN+RNN

The state-of-the-art deep learning method (CNN+RNN) has been

employed in many audio classification tasks. We trained a

CNN+RNN to be used as a baseline and to understand the bene-

fit of 3D convolution. Instead of 3D features input, the input to

CNN+RNN is a 2D log Mel-spectrogram image (80 × 400, over

10-second). We used a window of 50 ms for STFT analysis and

50% overlap. The CNN+RNN architecture consists of 3 convoluti-

onal layers and ReLU is used as an activation function. We use a

receptive field of 3×3 with max-pooling sizes after each convoluti-

onal layer 2× 2, stride of 2. We employed recurrent networks with

64 GRU cells. The RNN output is followed by a fully connected

layer.

4.3. Training

We tested different parameter combinations to decide the final ar-

chitecture to be used in the evaluation which include the number

of CNN layers {3, 4}, drop-out rates {0.5, 0.7}, and the number

of GRU cells {16, 32}. We also tested mean-pooling over time
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Figure 2: Training losses as a function of the training epochs.

and max-pooling over time on the RNN outputs [28], and the use

of convolutional attention module to learn bird calls structures re-

levant to the task [29]. However, we did not find that the pooling

strategy and to include such attention mechanism improve the over-

all performance, and further investigation is necessary. For the first

training strategy, we trained our baseline model using 97% of the

total data. The 3% validation split is used to monitor the training

process and for selecting final models. We stopped the training af-

ter 150 epochs to avoid overfitting. Figure 2 shows that a plateau

is reached after about 60 epochs, and then continue to decrease.

The training time is approximately 41 hours in our implementation

using a Tesla M40 GPU. Since the training data is large, we did

not perform data augmentation strategy. We then selected 5 models

from different epoch with the highest accuracy on the validation

split and averaged the predictions. We also trained our model using

3-way cross-validation strategy where in each fold two sets were

used for training and the other one for testing, and averaged the pre-

dictions (hence, 15 networks were selected, five models for each

cross-validation fold).

5. RESULTS

Table 2: Stratified 3-way cross-validation results.

Train Configuration Test AUC

freefield1010 + warblrb10k BirdVox 63.1%

freefield1010 + BirdVox wabrlrb10k 85.9%

warblrb10k + BirdVox freefield1010 79.4%

model ensemble Evaluation data 88.7%

Our proposed 3D-CNN+RNN obtained a preview score of

87.13% when model is trained using the combined data (by aver-

aging the predictions of five models from different epoch). Note

that evaluating one model achieved 86.72%. Selecting one robust

model is still applicable, for example, when such model is deployed

in a hardware with limited processing power. In contrast, it is of-

ten not practical to perform a model ensemble method even though

it improves the classifier performance in most cases. Meanwhile,

our 2D CNN+RNN baseline obtained 83.15% AUC score. The 3-

way cross-validation results where in each fold two sets were used

for training and the other one for testing obtain 88.70% AUC score

on the unseen evaluation data (via model ensemble method). For a

comparison, training three instances of networks using the combi-

ned data with different weight initialization and averaging the pre-

dictions obtained 88.64%.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Figure 3: Original spectrogram (concatenation of 5, 80 × 200) for positive class (left) and the Grad-CAM visualization (right), using a

3D-CNN+RNN model. The red regions correspond to high score for class.

Figure 4: Original spectrogram (80 × 400) for positive class (left) and the Grad-CAM visualization (right), using a CNN+RNN model. The

red regions correspond to high score for class.

We also tested pseudo-labeling approach inspired by the work

of Saito et al., 2017 [30]. To improve the accuracy of predicting

pseudo-labels from unlabeled target samples, we used multiple net-

works simultaneously to work as predictor. A new target sample

is selected if it satisfies two conditions: (1) All predictors predict

the same label, and (2) All predictors achieve a confidence score

exceeding the threshold. We adapted only the last layer of the trai-

ned network (while freezing the weights of other layers) using only

evaluation data which have been annotated with pseudo-labels. Ho-

wever, we did not find any improvement with this model adaptation

method.

5.1. Model Adaptation

For this challenge, the organizers have revealed that the evaluation

dataset consists of 2,000 recordings from the same conditions as

the warblrb10k data. To improve the model, we performed model

adaptation where we adapted a model trained with freefield1010

and BirdVox data with wabrlrb10k data (by re-training only the last

layer of the network). This results in 89.4% AUC score from 85.9%

in Table 2. This model is then used to evaluate only the test set with

the same condition as warblrb10k. We then used this new score

instead of the prediction from our best (ensemble) model (88.70%)

for the 2,000 recordings of warblrb10k data. This yielded our best

result for this challenge with a preview score of 89.58% AUC score.

5.2. Visualization

Recently, several techniques have been proposed to identify pattern

and visualize the impact of the particular regions that are important

for the model to make a prediction. This work adopted a Gradient-

weighted Class Activation Mapping (Grad-CAM) [31, 32] to visu-

alize our trained model. The Grad-CAM computed the gradient

of the predicted score for a particular class with respect to feature

maps output of a final convolutional layer. The result highlights the

importance of feature maps for a target class. This method does

not require architectural changes or re-training in order to gene-

rate visual explanations from any CNN-based networks. Note that

the feature map activation at the last 3D convolutional layer is a

2D image which is mapped from a 3D input. Hence, it may not

be straightforward to determine frame-based correspondence in the

temporal axis between the Grad-CAM image and the spectrogram

input. Nevertheless, as shown in Figure 3, the 3D convolution high-

lights only frequency bands where the bird calls are located across

the temporal dimension. As a comparison, the 2D convolution in

CNN+RNN highlights few specific locations of the bird calls, and

include low-frequency regions with no bird calls. This shows that

3D convolution is more capable of extracting in terms of long-term

time information in bird calls.

6. CONCLUSION

This paper proposed 3D convolutional recurrent neural networks

for bird audio detection challenge. Our results show that a redun-

dancy in the long-term time modeling of bird sounds can be exploi-

ted using both 3D convolution and recurrent layers. The proposed

architecture is preferred compared to a conventional CNN+RNN

technique. Building a robust deep learning model typically requires

a large amount of labeled training data. However, obtaining large

amounts of data is an expensive task and not always feasible. In fu-

ture work, we will investigate the method of generating labeled data

via a pseudo-labeling method where approximate labels are produ-

ced from unlabeled data. This can be achieved, for example, using

generative adversarial networks. Domain adaptation using advers-

arial learning is another alternative to build a discriminative model

and invariant to domain at the same time.
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