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ABSTRACT

As noise pollution in urban environments is constantly rising, novel
smart city applications are required for acoustic monitoring and mu-
nicipal decision making. This paper summarizes the experiences
made during the field test of the Stadtlärm system for distributed
noise measurement in summer/fall of 2018 in Jena, Germany.

Index Terms— internet of things (IoT), smart city, acoustic
scene classification, sensor network, noise level measurement

1. INTRODUCTION

Urban dwellers are often exposed to high levels of noise from a
variety of sources such as road traffic, construction sites and public
sport and music events. Ideally, the city administration needs to sys-
tematically investigate any complaint. However, this task is hardly
feasible due to the high personnel and cost involved.

As previously introduced in [1], the main goal of the Stadtlärm
research project was to develop a distributed noise monitoring sys-
tem, which supports city management by continuously measuring
noise levels and sources. The developed system of 12 distributed
sensors was subjected to a field test lasting several months after one
and a half years of development. This paper presents a field re-
port and discusses various experiences that have been made. We
hope that this experience report will also be useful for other re-
search projects in the field of IoT and Smart Cities. Related re-
search projects propose similar solutions for noise monitoring in
urban environments (see for instance [2, 3, 4]). Among others, the
special focus during the Stadtlärm project was on checking legally
prescribed noise limits.

The paper will be structured as follows. Section 2 briefly de-
scribes the individual components of the Stadtlärm noise monitor-
ing system. Then, Section 3 discusses practical hardware considera-
tions such as the microphone selection, weather resistance, moisture
protection, as well as the long-term operating status of the sensor
devices. Different measurements towards on-site sound propaga-
tion will be described in Section 4. Finally we will illustrate how
the set of acoustic classes was refined and the algorithm for acous-
tic scene classification was improved during the project duration in
Section 5.
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Figure 1: Stadtlärm system overview. The block diagram illustrates
the data measurement and processing on the acoustic sensor units,
communication via an MQTT broker, as well as data storage and
visualization [1].

2. SYSTEM OVERVIEW

The Stadtlärm noise monitoring system consists of multiple dis-
tributed sensors, i. e., embedded systems that record and process au-
dio data, and server-side services for further audio processing, data
storage and access, as well as user applications. The overall sys-
tem’s backbone is a broker-based communications architecture. All
communications among components and services utilize MQTT via
a central broker, which also handles authentication and authoriza-
tion. We used MQTT as the underlying communication protocol.
Therefore, we defined a topics hierarchy and extended the publish/
subscribe paradigm by a convention enabling a request/response
mechanism. The communications architecture is discussed in more
detail in [5].

As shown in Figure 1, the system’s components can be parti-
tioned into three main functional groups. The acoustic sensor units
are embedded field devices for acoustic data acquisition (see Sec-
tion 3). On the software side, the sensors run embedded Linux and a
custom application (implemented in Go), which handles communi-
cation (data, metadata, and management aspects). This application
is also responsible for integration with the actual audio retrieval and
processing software (implemented in Python). This software per-
forms level measurements according to requirements of the German
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TA Lärm regulations (see Section 4) as well as acoustic scene clas-
sification based on deep neural networks (see Section 5). By only
transmitting the noise level and classification analysis results, pri-
vacy by design is implemented (as no speech recognition / surveil-
lance is possible) and the amount of data for mobile communica-
tions is reduced.

The Stadtlärm audio service runs on a central server. After re-
ceiving measurement data from the acoustic sensor units, the ser-
vice complements their data processing by computing long-term
noise level parameters as defined in the German TA Lärm reg-
ulations. Data is stored and made available by request through
an MQTT API. The Stadtlärm web application runs on a separate
server and offers a web frontend to the data accumulated by the sys-
tem tailored for administrative employees in departments concerned
with urban noise. As such, it represents sensors on a city map, indi-
cating status and current noise levels per location. On a per-sensor
basis, historical level and classification data can be viewed, and re-
ports can be created based on this.

Central to the system, an MQTT broker (Mosquitto) runs on
another server and acts as a communications hub with central au-
thentication/authorization. The broker is complemented by a central
administration component serving as a registry of acoustic sensor
units, a monitor of the overall system’s status and load, and provid-
ing facilities to manage the sensors.

3. SENSOR HARDWARE

The acoustic sensor units are custom embedded devices developed
in the course of the project. Each unit consists of a computation
platform (Raspberry Pi 3 Compute Module Lite) and a microphone
integrated on a custom PCB that also addresses aspects of robust-
ness (robust power supply, hardware watchdog, etc.) and commu-
nications (M.2 slot for a wireless modem). The required computing
power was estimated based on an initial implementation of the audio
processing software (implemented in Python and utilizing the keras
deep learning framework). Thanks to further optimizations made
during the algorithmic development in the course of the project,
the final CPU load is about 50% (across its 4 cores, i.e., equiva-
lent to 200% load on a single core) and thus more than adequate,
with ample reserves for communications and management as well
as potential future adaptations.

For communications, both mobile wireless communications
and utilizing public WiFi networks were considered. Each sensor
unit is outfitted with a wireless modem and a SIM card. The total
data volume used per month and unit is less than 1 GB (even includ-
ing a remote firmware update or two), with the net amount of audio
data being communicated by a single sensor being about 9 MB per
day. As the sensors were meant to be mounted on lighting posts,
assuming a permanent mains supply was an unrealistic assumption.
The devices were therefore fitted with an additional power man-
agement PCB and a rechargeable battery (150 Wh), which enable
off-grid operation with a periodic recharge (of at least 5 hours per
day, typically overnight). Both computations and always-on mobile
communications (with data being sent in near-real-time) result in a
continuous power consumption of about 4 W. For this, the battery’s
capacity is ample; the situation is further relaxed by the fact that, in
the field trial, lighting posts are powered for significantly more than
5 hours in the annual average, topping 16 hours in winter.

The sensor systems are fitted in weatherproof housings (for cost
reasons, off-the-shelf) meant to be mounted on lighting posts of
varying heights and diameters, at heights of 3 m or more. For this,

Figure 2: A Stadtlärm sensor equipped with the optional weather
station components.

the housings were fitted with steel strap clamps, which are flexible
with respect to a post’s diameter. The housing’s external dimensions
are 25 x 35 x 15 cm3, so it is large enough to fit all the components
and even leaves some room for optional equipment. It features a
lockable hinged door, enabling easy but restricted access to its in-
terior, necessary for wiring the device up to mains power during
installation. For the pilot trial, the devices were otherwise assem-
bled and configured manually prior to their being rolled out.

Another challenge was the integration of the microphone.
Industry-grade microphones in outdoor-capable housings cost eas-
ily as much as the rest of the sensor system, which is why the goal
with respect to the microphone was to use low-cost hardware in
conjunction with state-of-the-art processing to nevertheless deliver
high-quality audio recognition results. To this end, a MEMS mi-
crophone (ICS 43434, with an I2S interface) was selected based
on an systematic measurement and comparison of various micro-
phone models. The easiest way of integrating that with the housing
was to place the microphone directly behind a 4 mm drill hole at
the bottom. Frequency response measurements and field recordings
confirmed this to be adequate for the purpose of noise measurement
and acoustic scene classification. However, in the course of the pilot
trial, wind noise manifested itself as an issue of underestimated im-
pact, requiring to make adaptions to the underlying acoustic scene
classification model (see Section 5).

As weather may have profound effects on audio propagation
and reception, a subset of sensor units in the pilot trial were ex-
tended by an inexpensive weather station measuring wind speed and
direction as well as temperature and ambient humidity (Fig. 2). In-
ternally, these additional components are connected via USB, prov-
ing the extensibility of the hardware platform. The weather data
(measured by 3 devices placed in representative locations during the
field test) correlate closely with weather data available from public
providers, with plausible local deviations nevertheless being evi-
dent.

4. NOISE LEVEL MEASUREMENT

4.1. Sound Propagation in the Target Area

We performed an experiment to investigate the sound propagation in
the target area of the field test. Therefore, given different configura-
tions of source-to-sensor distances, we measured the drop in sound
level. As a rule of thumb, we expect the sound level to drop by
6dB for a doubling of the distance. The test setup included an om-
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Figure 3: Examples of two-second long spectrogram patches for
the classes car, conversation, music, roadworks, siren, train, tram,
truck, and wind (from top left to right bottom), which are processed
by the neural network.

nidirectional loudspeaker (GlobeSource Radiator by Outline) with
a mobile power supply unit, which was powered by a truck battery.
The measurement device was a NTi Audio XL2 with a calibrated
Earthworks M30 as microphone. The Earthworks microphone was
phantom-powered by the internal batteries of the NTi XL2 audio.
We initially set up the SPL at a distance of 1 meter to 90 dB and for
the second play-through to 100 dB.

As test signals, we used a simple sinusoidal signal with fre-
quency of 1 kHz as well as a pink noise signal. A third test signal
was a compilation of audio recordings covering different acoustic
scenes. We repeated the test procedure at six different locations
within the target area. From the results, we found that the measured
SPL levels were slightly higher than expected. Possible reasons
could be the rustling of the leaves or the wind, sound reflections
by trees and buildings, as well as noises caused by pedestrians and
cyclists nearby.

4.2. Case Study: Noise Pollution caused by Soccer Games

Residents from the nearby residential areas around the target area
often complain about noise from soccer games, which happen typ-
ically on the weekends. As a show case, we analyzed the loud-
ness curves, which have a temporal resolution of 0.125 s, recorded
at the sound emission location i. e., the soccer stadium as well as
a higher residential area around 600 m away. By computing the
cross-correlation between overlapping 30 second long segments of
the loudness curve, we derive the local maximum cross-correlation.
Based on an additional test-recording nearby the second sensor, we
were able to associate peaks in the cross-correlation curve with typ-
ical acoustic events during a soccer game such as drumming, fan
cheering, and announcements from the stadium speaker. This pro-
vides clear evidence that noise from the soccer game is audible even
in surrounding residential areas.

5. ACOUSTIC SCENE AND EVENT CLASSIFICATION

5.1. Acoustic Classes

In the final project stage, the initial number of acoustic scene classes
(as presented in [1]) was reduced from 18 to 9 by focusing on
the most relevant noise sources in the target area. In order to im-
prove the applicability of the Stadtlärm system for traffic moni-

toring applications, the “truck” class was added to distinguish be-
tween the four most relevant vehicle types in the target site—cars,
trains, trams, and trucks. During test recordings, we found that
wind noises often overshadow other present noise sources, hence
we added “wind” as an additional sound class. The intuition was
to get a better sense of the classification confidence of other rec-
ognized sound sources. The initial sound classes “busking”, “mu-
sic event”, and “open-air” were merged to a unified class “music”,
which includes all music-related events. For the class “siren”, we
improved the training data by adding recordings of local police cars,
fire trucks, and ambulances. At the same time, we discarded the
sound event classes “applause, “chants”, “horn”, and “shouting”
as well as the (more ambiguous) sound scenes “public place” and
“sports events” for now.

5.2. Acoustic Scene Classification

The classification model, which processes the recorded audio
stream on the sensor units, was improved following the convolu-
tional neural network (CNN) architecture proposed in [6]. The net-
work is based on the VGG model paradigm that includes pairs of
convolutional layers with small filter size and no intermediate pool-
ing operation. In the applied architecture, four such layer pairs are
concatenated with increasing number of filters (32, 64, 128, 256).
After each layer pair, we apply a (3,3) max pooling in order to grad-
ually decrease the spatial resolution and to encourage learning more
abstract spectrogram patterns in higher layers. In order to improve
the model’s generalization towards unseen input data, we apply
batch normalization between the convolutional layers, global av-
erage pooling between the convolutional and dense layers, dropout
(0.25) between the final dense layers, as well as L2 regularization
(0.01) on the penultimate dense layer.

Given the project-specific set of acoustic classes discussed in
the previous section, we assembled training data from various pub-
lically available datasets such as the Urban Sound dataset1, the TUT
acoustic scenes 2016 dataset2, as well as the freefield1010 dataset3.

5.3. Results & Observations

Figure 3 shows examples of two-second long spectrogram patches
for all 9 classes as they are processed by the neural network. These
plot give a better intuition of the difficulty of the classification task.
The classes “conversation”, “music”, “roadworks”, and “siren”
show distinctive patterns of either harmonic components (horizon-
tal lines) or percussive components (vertical lines). For the vehicle-
related classes “car”, “train”, “tram”, and “truck”, the sounds are
more complex and noisy. The choice of an analysis window of
two seconds (and a processing hop-size of one second) allows for
a pseudo real-time processing of the recorded audio streams at the
sensor units. However, such short analysis windows cannot capture
slowly changing sounds such as passing vehicles. The noisy nature
of wind also becomes apparent from the plot.

Figure 4 shows the receiver operation characteristic (ROC)
curves as well as the precision-recall curves, which we obtained
in a classification experiment on a separate test set, which was not
used in the model training process. For each class, we obtained an

1https://urbansounddataset.weebly.com/
urbansound.html

2https://zenodo.org/record/45739
3https://c4dm.eecs.qmul.ac.uk/rdr/handle/

123456789/35
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Figure 4: Receiver operation curves (ROC) and precision-recall curves for all 10 sound classes. Area-under-the-curve (AUC), optimal class-
wise decision thresholds and best f-measure values are given in brackets.

optimal decision treshold on the sigmoid output values from the fi-
nal network layer by maximizing the f-score. While all classes get a
high AUC (area-under-the-curve) value, the precision-recall curves
provide a better insight into the classifier performance.

When analyzing test recordings, which were made on the target
site with the sensor, we observed a constant level of noise, either
from environmental factors such as wind and rain or from the sen-
sor hardware itself. Future steps for improving the model could be
a stronger focus on data augmentation, where the high-quality au-
dio recordings in the training data sets will be mixed with on-site
background noise recordings to make the model more robust. Also
we plan to test recently proposed methods for domain adaptation to
achieve more robust classification results in different test environ-
ments.

6. WEB APPLICATION

We used the field test to evaluate the practical suitability of the web
application. Based on continuous communication with the local
city administration, we received regular feedback and optimized the
main functionalities of the web application. This mainly concerned
the identification of the prominent noise sources as well as the over-
all documentation of the noise level measurements. By providing
the estimated noise source class probabilities from the model, non-
expert users can better interpret the confidence of the acoustic scene
classifier.
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open platform for distributed noise monitoring,” in Proceed-
ings of the 25th Telecommunications Forum (TELFOR) 2017,
Belgrade, Serbia, 2017, pp. 1–4.

[6] Y. Sakashita and M. Aono, “Acoustic scene classification by
ensemble of spectrograms based in adaptive temporal division,”
in Detection and Classification of Acoustic Scenes and Events
Challenge (DCASE), 2018.

4


