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ABSTRACT

An adversarial attack is a method to generate perturbations to the
input of a machine learning model in order to make the output of
the model incorrect. The perturbed inputs are known as adversarial
examples. In this paper, we investigate the robustness of adversarial
examples to simple input transformations such as mp3 compression,
resampling, white noise and reverb in the task of sound event classi-
fication. By performing this analysis, we aim to provide insights on
strengths and weaknesses in current adversarial attack algorithms as
well as provide a baseline for defenses against adversarial attacks.
Our work shows that adversarial attacks are not robust to simple
input transformations. White noise is the most consistent method
to defend against adversarial attacks with a success rate of 73.72%
averaged across all models and attack algorithms.

Index Terms— adversarial attacks, deep learning, robust clas-
sifiers, sound event classification.

1. INTRODUCTION

Adversarial attacks are algorithms that add imperceptible perturba-
tions to the input signal of a machine learning model in order to
generate an incorrect output. The perturbed input signals are called
adversarial examples. The existence of adversarial attacks presents
a security threat to deep learning models that are used in tasks such
as speech recognition and sound event classification, where fooling
classifiers can be used to hide malicious content [1, 2]. Adversarial
attacks call into question the robustness of machine learning mod-
els and whether we can improve them by addressing adversarial
attacks.

There is extensive work that investigates the robustness of ad-
versarial attacks against simple input transformations in the task
of image recognition. Kurakin, Goodfellow and Bengio [3] ap-
ply transformations such as Gaussian noise, JPEG compression etc.
to verify the robustness of adversarial attacks. They work towards
physical adversarial examples where a photo can be taken of the
adversarial example and fool the image recognition model. There
is a lot of similar work in image recognition that focuses on dif-
ferent input transformations and their effect on adversarial attacks
[4, 5, 6]. Ultimately, this led to 3-d printouts that were adversarial
[7], adversarial stickers [8] etc.

In automatic speech recognition, a lot of adversarial attack al-
gorithms have been developed keeping in mind audio specific con-
cerns. Yakura and Samura [9] and Qin et al. [10] developed meth-

*This work has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 765068.

Tsupported by RAEng Research Fellowship RF/128.

https://doi.org/10.33682/sp9n-qk06

239

ods to simulate real world distortion while creating adversarial at-
tacks to make them robust. Liu et al. [11] developed a system to
make the process of generating adversarial attacks quicker and qui-
eter. Du et al. [12] developed the Siren Attack that uses Particle
Swarm Optimization to speed up generation of adversarial attacks.
Besides the Siren Attack, none of these attacks have been tested on
other audio tasks such as sound event classification or music classi-
fication.

Similarly, most of the work on defenses against adversarial at-
tacks is focused on automatic speech recognition. Research has
shown that mp3 compression, band pass filters, adding noise etc.
[13, 14, 15, 16] are effective at eliminating adversarial examples in
automatic speech recognition. To our knowledge, no work has been
done on the effect of input transformations on adversarial attacks
in sound event classification. Esmaeilpour et al. [17] developed a
support vector machine (SVM) classifier that was more robust to
adversarial attacks for sound event classification, but it was at the
cost of model performance.

This research aims to establish a body of work that studies the
effects of adversarial attacks and defenses in sound event classifi-
cation. In this paper, we explore simple input transformations such
as mp3 compression, resampling, white noise and live reverb as de-
fenses against adversarial attacks across different models. We build
off of work done in Subramanian et al. [18] where the performance
of popular adversarial attacks was tested against the top submissions
to the DCASE 2018 challenge on General purpose audio tagging'.
We use the adversarial examples generated in that work and run ex-
periments on how robust they are to input transformations.

Our contributions can be summarised as follows: 1. We evalu-
ate the robustness of adversarial examples generated in [18] against
simple input transformations. 2. We create a baseline system of de-
fenses against adversarial attacks for sound event classification.

2. METHODOLOGY

2.1. Adversarial attacks

We use a subset of the adversarial attacks in Subramanian et al. [18],
the attacks we ignore are the two weaker baseline attacks. All of
the attacks used are white box attacks meaning that they have full
information of the model they are attacking. The attacks fall into
two categories, untargeted and targeted attack. A targeted attack is
when the algorithm fools the output classifier to a specific prede-
termined class. An untargeted attack is when the algorithm reduces
the confidence of the current class until the classifier is fooled. The
adversarial attacks used in this work are as follows:

Thttp://dcase.community/challenge2018/task-general-purpose-audio-
tagging-results
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1. L-BFGS: Szegedy et al. [19] introduced one of the first
methods for generating adversarial attacks, it is a targeted
attack.

Assume a classifier denoted as f : R™ — {1...k} with a
loss function lossy. For a given input x € R™ and target
t € {1....k} we aim to identify the value of perturbation r as
formulated below:

Minimize ||7||2 under the conditions:
fla+r) =t
z+rel0,1]™

The box constraint on x + r is to prevent clipping. The exact
computation of this problem is difficult so it is approximated
using the box constrained L-BFGS algorithm. So the new
equation to minimize is:

clr| + lossy(z + 7, 1)

DeepFool: DeepFool attack was introduced by Moozavi-
dezfooli et al. [20]. It is an untargeted attack where the
algorithm iteratively linearizes the deep learning model to
generate perturbations to fool the classifier. We show how
the Deepfool classifier works in the case of a binary classi-
fier, in order to understand how it scales to the multi-class
problem we recommend the readers look at the original pa-
per.

We use the same terminology as defined above for the L-
BFGS algorithm. In this case we start by assuming we have
a linear classifier f so the relationship between the input x
and output can be written as:

f@)=w"z+b

Here, w is the weight matrix and b is the bias added. In a
binary linear classifier there is a hyper-plane H that separates
the two classes. The hyper-plane is defined such that x €
H — f(z) = 0 So, to generate an adversarial attack you
need to create a perturbation that pushes the input to the other
side of the hyper-plane. This perturbation corresponds to the
orthogonal projection of the input onto this hyper-plane. The
perturbation for a particular input o denoted by 7(zo) can
be computed using the formula:

f(zo)

- 2
llwll

r(zo) =

In the case of a general differentiable binary classifier the
model is linearized iteratively and the perturbation is calcu-
lated using the formula given above.

3. Carlini and Wagner - Carlini and Wagner introduce a
strong set of attacks based on the Lo, L2 and L., distance
[21]. This can be used as a targeted and untargeted attack.
The problem for adversarial attacks is formulated the same
way as Szegedy et al. [19]. The classifier is denoted as C'
with input x, ¢ is constant:

Minimize D(x,z + J) + c.f(z + 9)
such that z 4+ § € [0, 1]"

under the conditions z + r € [0, 1]™
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Here D is a distance function that is either the Lo, L2 or Lo
norm and f is an objective that simplifies the problem such
that:

C(z+9) =tistrueif f(z +9) <

0
f(a") = (maz(Z(«"):) — Z(")) " i #

In the equation for f, Z denotes the penultimate layer of the
classifier and ¢ is the target class. This is just one example of
the function f many other functions work and can be found
in the paper [21]. In this work we use the L2 version of the
Carlini and Wagner attack.

2.2. Input Transformations

We pick input transformations that are likely to occur in the real
world when playing an audio file and recording it on a smart phone.
The input transformations are as follows:

Mp3 compression - Mp3 compression is a popular format for
storing audio files. It is done using the libmp3lame encoding library
inside ffmpeg [22]. In our experiments, we compress the adversar-
ial audio examples at three constant bit-rates—48kbps, 128kbps and
320kbps. The lower the bitrate, the higher the information loss will
be.

Re-sampling - We are interested in the effects of removing
high frequency content on adversarial examples. In our work, re-
sampling serves as a low pass filter and is performed using the re-
sampy” python library. Resampy uses a band limited sinc interpola-
tion method for re-sampling [23]. We use the “kaiser best” configu-
ration which is the high quality version of resampy. The adversarial
audio files in our experiments have a sampling rate of 32kHz. We
resample the audio files to 8kHz, 16kHz, and 20kHz and resample
it back to 32kHz.

White noise addition - White noise is a standard digital dis-
tortion. It is added to the adversarial examples at a signal-to-noise
ratio of 20dB, 40dB and 60dB.

Live reverberation - Using the live recording setting of the
audio degradation toolbox [24], we obtain the impulse response for
the “Great Hall”—one of the live rooms with a very long reverb. We
applied said impulse response to add reverb to our adversarial audio
files using convolution. After convolution, we eliminate the tail of
the audio file in order to preserve its original length.

2.3. Datasest

‘We use the FSDKaggle2018 dataset [25] introduced for the DCASE
2018 challenge on general-purpose audio tagging. This dataset con-
sists of 41 classes, ranging from urban sounds such as buses, keys
jangling and fireworks to musical instruments such as cello, snare
drum and Glockenspiel. We use the adversarial audio examples
generated on this dataset in Subramanian et al. [18]. For the un-
targeted attacks we use 6 audio files per class making a total of 246
audio files per model per attack. For the targeted attack we use a
subset of 6 classes and for each class we generate 5 targeted adver-
sarial attacks to each of the other 5 classes. This makes 180 audio
files per model per attack. Since the adversarial attack algorithms
are not 100% effective the actual number of adversarial examples
are a bit lower than the number indicated above.

Zhttps://github.com/bmcfee/resampy
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Model Training | Test
VGG13 0.9714 0.8093
CRNN 0.9768 0.8437
GCNN 0.9803 0.8437
dense_mel | 0.9876 0.89875
dense_wav | 0.9698 0.86125

Table 1: Model performance on training and test data.

2.4. Models

We use the DenseNet models described by Jeong and Lim [26].
The DenseNet model concatenates the input to the output for each
module. We use two versions of the architecture, the first version
uses log mel spectrogram as input (dense_mel) to the model and the
second one uses raw audio (dense_wav) as the input to the model.

We use three models from Igbal et al. [27], the VGG13, CRNN
and GCNN networks. VGG13 is a convolutional neural network
inspired by the VGG13 architecture. CRNN is a convolutional re-
current neural network that uses a bidirectional RNN after the con-
volutional layers. The GCNN is a gated convolutional neural net-
work where the gated component is inspired from Long-Short Term
Memory (LSTMs). The input to all three models is a log mel spec-
trogram.

Table 1 shows the training and test accuracy for each of the
models on the FSDKaggle2018 dataset [25]. We pick these models
because they were the top submissions for the DCASE 2018 chal-
lenge on “General purpose audio-tagging”.

2.5. Experiment and metrics

The experimental setup has three sets of labels. First is the ground
truth, which is the label associated with the audio file from the FSD-
Kaggle2018 dataset [25]. The second is the adversarial label, gen-
erated by applying adversarial attacks on the audio file from the
aforementioned dataset. The third is the transformed label, which
is generated by running each audio file through each of the input
transformations separately. Once these transformed inputs are run
through the model, it generates the transformed label. Our task is
to verify how effective a defense and input transformation is against
an adversarial attack. We compare how many transformed labels
are ground truth, adversarial, or different from both.

A good defense would convert a lot of the transformed labels
to the ground truth; however, if an adversarial attack is robust, a lot
of the transformed labels will remain the adversarial labels. We use
signal-to-noise ratio and output confidence values generated from
Subramanian et al. [18] to explain the results.

3. RESULTS AND DISCUSSION

Table 2 provides a reference for how the defenses affect the ground
truth audio data before an adversarial attack is performed. Table 3
compares the effectiveness of mp3 compression, white noise addi-
tion, re-sampling and live reverb averaged across all of the models
and adversarial attack algorithms. In general, the numbers look as
we expect: the more distortion we add to the adversarial example,
the more likely it will stop being an adversarial example. The best
defense against the adversaries on average is adding noise at 20dB.
As we raise the volume of noise to 40dB, the number of audio exam-
ples that are destroyed lowers; however, the number of adversarial
examples that are classified as a different label is lowered as well.
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Transform GT Diff
mp3 48k 9398 | 6.02
mp3 128k 99.92 | 0.08
mp3 320k 100 0
noise 20dB | 86.67 | 13.33
noise 40dB | 97.89 | 2.11
noise 60dB | 99.84 | 0.16
sr 8kHz 55.36 | 44.63
sr 16kHz 85.77 | 14.23
sr 20kHz 91.87 | 8.13
live reverb 82.85 | 17.15

Table 2: Summary of defenses on ground truth data.

Transform Adv GT Diff
mp3 48k 45.02 | 50.23 | 4.75
mp3 128k 83.66 | 15.71 | 0.63
mp3 320k 91.55 | 8.26 0.17
noise 20dB | 3.40 73.72 | 22.87
noise 40dB | 31.68 | 63.69 | 4.61
noise 60dB | 81.00 | 17.58 | 1.41
sr 8kHz 27.93 | 41.71 | 30.34
sr 16kHz 42.36 | 47.85 | 9.78
sr 20kHz 4790 | 44.89 | 7.20
live reverb 4.09 67.07 | 28.83

Table 3: Summary of performance given as a percentage of adver-
sarial examples that remain adversarial, that go back to ground truth
and that change completely.

Live reverb is the second most successful defense against the ad-
versaries. These simple input transformations can defend against
adversaries, showing that there is a need to create more powerful
attacks against sound event classification.

The next table, Table 4, shows how each model behaves in re-
sponse to these input transformations on the adversarial attacks. We
do not show all the data in the interest of space; instead, we show
the best two defenses for each model. Across all the models, adding
white noise is an effective defense against adversarial attacks. Be-
sides adding white noise, reverb is one of the better defenses. In
general, the defenses are more successful for the DenseNet models
than for the other three models. One of the reasons for this could
be because the adversarial attacks for the DenseNet model are op-
timized on the output probabilities; whereas the other three models
are optimized on the output scores. This means that optimizing an
adversarial attack for the DenseNet models only needs to maximize
the relative score of the desired class.

Between the DenseNet models the raw audio configuration of
the DenseNet behaves differently. Resampling at 20kHz success-
fully eliminates adversarial examples at 97.18%. For the mel spec-
trogram configuration of the DenseNet resampling at 20kHz is only
successful for 72.36% of the cases. This strongly suggests that the
model is sensitive to different changes between the mel spectrogram
and raw audio inputs. We speculate that the perceptual weights in-
troduced by the mel spectrogram make that version of the DenseNet
give less importance to higher frequencies. This means that losing
frequency above 20kHz would impact the mel spectrogram model
less adversely than the raw audio model.

In the cases where the defenses are less effective, we want to
know if the distribution of the adversarial examples on which the
input transforms are effective or ineffective are similar. We pick the
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Model

Best

Adv

GT

Diff

dense_mel

noise 20dB

1.52

97.86

0.61

noise 40dB

6.25

92.97

0.76

dense_wav

sr 20kHz

1.46

97.55

0.97

mp3 48k

1.58

97.18

1.22

VGG13

noise 20dB

4.34

58.74

38.89

live

5.05

57.69

37.25

CRNN

noise 20dB

4.70

65.92

29.37

noise 40dB

27.37

62.86

9.75

GCNN

noise 40dB

27.81

64.31

7.86

live

5.98

57.74

36.26

Table 4: Top 2 defenses against the different model architectures
averaged over all the adversarial attacks.
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(b) VGG13 confusion matrix with noise 20dB input transform.

Figure 1: Comparison of two confusion matrices. The confusion
matrix plots the ground truth against the transformed label.

VGG13 model to compare since the success of noise at 20dB and
live reverb is very close. We plot the confusion matrices for the two
scenarios in figure 1. Noise at 20dB is an effective defense for label
3 (Bass drum) and 33 (Snare drum), but live reverb is not a good de-
fense, live reverb is successful against label 8 (Clarinet) but, noise at
20dB is not as effective etc. Interestingly label 21 (Gunshot or gun-
fire) has 0% success for both defenses. Evidently, audio files from
different labels seem to have disparate properties; therefore, apply-
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Attack

SNR/Conf

Best

Adv

GT

Diff

deepfool

50/0.35

noise 20dB

414

77.23

18.61

noise 40dB

16.09

76.17

7.72

live

4.22

70.37

25.04

C&W
untargeted

51.26/0.71

noise 20dB

5.88

74.83

19.28

live

5.88

70.17

23.93

noise 40dB

43.79

50.98

522

L-BFGS

56.25/0.98

noise 20dB

0.40

69.56

30.02

noise 40dB

32.33

66.44

1.22

live

1.63

62.77

35.59

C&W
Targeted

50.49/0.97

noise 20dB

1.31

70.6

28.07

noise 40dB

36.32

61.52

2.15

live

3.46

60.93

35.60

Table 5: Table shows the top 3 defenses against input transforms
for the different adversarial attacks averaged over all the models.
The SNR in dB and label confidence (Conf) as probability of the
adversarial examples are presented as averaged over all the models.

ing each distortion type will affect the differing labels uniquely This
would mean that while developing an adversarial attack that works
in the real world, we need to come up with a solution that is robust
to different types of distortion.

Table 5 shows the performance of the top 3 defenses for each
adversarial attack algorithm. The targeted attacks seem more robust
to these input transformations than the untargeted attacks but not by
too much. We expect Carlini and Wagner to be more robust because
it is a more powerful attack than Deepfool and L-BFGS as is shown
in Subramanian et al. [18].

The fact that the SNR is very high for all of the attack algo-
rithms is good from a real world perspective because that means that
the noise added to make the audio files adversarial is less likely to be
perceived. However, it is possible that the noise is being masked by
the input transformations which makes the adversarial attacks not
very robust. Given that the SNR is so high there is a lot of headroom
to improve adversarial attack algorithms for sound event detection
where we increase the amount of noise added without compromis-
ing too much on how perceivable the adversarial attacks are.

4. CONCLUSION

We show that simple input transformations such as mp3 compres-
sion, re-sampling, white noise addition and live reverb are effective
defenses against popular adversarial attacks. White noise at 20dB
is the most consistent method to defend against adversarial attacks
with live reverb being a close second. The raw audio version of
the DenseNet behaves differently with re-sampling at 20kHz, being
the most effective defense. This suggests that different input rep-
resentations affect the type of features that a deep learning model
can learn by making the deep learning model focus on different fre-
quency bands. Generally, we hope that these defenses give a sense
of current weaknesses in research on adversarial attacks for audio.
Another area that we plan to explore is trying to explain the
presence of adversarial attacks in sound event classification. We aim
to combine research from interpretability and adversarial attacks in
order to work towards explaining and interpreting deep learning.
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