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ABSTRACT

Beamforming is a standard method of determining the
Direction-of-Arrival (DoA) of wave energy to an array of receivers.
In the case of acoustic waves in an air medium, the array would
comprise microphones. The angular resolution of an array depends
on the frequency of the data, the number of microphones, the size of
the array relative to the wavelengths in the medium, and the geom-
etry of the array, i.e., the positions of the microphones in relation to
each other. The task of finding the right balance between the afore-
mentioned parameters is microphone-array optimization. This task
is rendered even more complicated in the particular context of sound
classification and localization for self driving cars as a result of the
design limitations imposed by the automotive industry. We present
a microphone array optimization method suitable for designing ar-
rays to be placed on vehicles, which applies beamforming using
the Radon transform. We show how our method produces an array
geometry with reasonable angular resolution for audio frequencies
that are in the range of interest for a road scenario.

Index Terms— direction-of-arrival, angular resolution, audio
classification, microphone array

1. INTRODUCTION

Automotive OEMs (Original Equipment Manufacturers) have re-
cently shown interest in audio as an additional source of environ-
mental perception for autonomous vehicles. The classic sensory
setup is made up of cameras, Lidars, Radars and ultrasound. Al-
though these devices provide a good amount of data, they remain
restricted to the line of sight. On the other hand, the ambient au-
dio wave field, which can be captured using microphones, is less
restricted by lines of sight due to the longer wavelengths of acoustic
waves in air and the sizes of typical obstructions in road scenar-
ios. In addition, many traffic road participants and driving mission-
critical events are accompanied by particular sound signatures, e.g.,
emergency vehicles’ sirens, motorcycles and tire screeches. These
sound signatures can be localized through the application of beam-
forming to acoustic wave field data recorded by microphone arrays
mounted on a vehicle, and subsequently classified using a trained
network.

Alternatively, it is possible to use a machine-learning based ap-
proach to determine the DoA as in [1], or even do joint classifica-
tion and localization using a trained network in a data-based man-
ner as in [2]. However, in order to do so one must have known DoA
for every sound event in the training dataset. Generating a labeled
training dataset containing road audio objects and their respective

Figure 1: Figure from [7], showing a curved x− t trajectory (right)
and its transform to τ − p (left). For perfectly plane waves acquired
with no spatial aliasing and infinite offset, a line with slope p in the
x− t space will transform to a point in the τ − p space.

DoAs would be quite a challenging prospect, especially given that
the recording array and the sources would be moving in an unpre-
dictable environment.

Optimization is an inherent part of array design that has been
and continues to be addressed in the literature. [3] show a compar-
ison of array responses for existing regular geometry array designs.
An example of a stochastic inversion method used for optimizing ar-
ray responses which results in irregular array geometries is shown
in [4]. [5] show an optimization based on a genetic algorithm for
localizing sound sources in a room. [6] optimize a set of concentric
spherical microphone arrays for robotics by randomly distributing
microphones on the spheres. In this paper we propose an inversion
scheme to optimize array responses for a vehicle-mounted planar
array that would provide sufficient accuracy in terms of angular res-
olution and be practical and low-cost for OEMs to integrate.

Designing a microphone array suitable for mounting on a vehi-
cle is a challenge. Indeed, a) usable surfaces on a car are restricted,
b) cost is a major concern for OEMs, c) seamless integration with
the car design is a must, and d) angular resolution is a critical factor
for decision-making software.

First, we describe the theory behind our beamforming method
which is based on the τ − p transform (i.e., the Radon transform).
Then, we show how we use the τ − p transform in an array ge-
ometry inversion that seeks to optimize the angular resolution of a
given array for a range of frequencies typical for road audio events.
Finally, we show the results of the inversion for a particular vehicle-
mounting scenario.
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2. BEAMFORMING THEORY

2.1. The τ − p transform

The τ − p transform [7, 8], or slant stacking, is a method of de-
composing a recorded wavefield into its plane-wave components. It
is commonly used for velocity analysis of seismic waves that are
acquired by geophone arrays deployed on the surface of the Earth.
The transform is defined as:

Ψ(τ, p) =

∫ ∞

−∞
u(τ + px, x)dx, (1)

where u(t, x) is the wavefield recorded by a linear receiver array, at
time t and at a horizontal offset x from a defined starting position.
p is the ray parameter, or apparent slowness, and is defined as 1

v
,

where v is medium velocity. In the x−t space, t = τ+px represents
a line with slope p and vertical intercept time τ . Figure 1 depicts a
hyperbola in the x−t space, and how it translates to an ellipse in the
τ − p space. A perfectly plane wave propogating in the horizontal
direction along the X axis will appear in the τ − p space as a single
point.

Equation (1) is then generalized to the 2D case where the re-
ceivers are positioned on an X-Y plane as:

Ψ(τ, px, py) =

∫ ∞

−∞

∫ ∞

−∞
u(τ + pxx+ pyy, x, y)dxdy, (2)

where the apparent slowness vector p now has two components
(px, py).

For the discrete case, the τ − p transform is effectively a sim-
ple summation into bins operator. The number of slowness bins
are in the model space of the transform, and can be determined
on application. Under the assumption that the acoustic waves are
propagating along the X-Y plane in a homogeneous air medium,
the ratio between the px and py slowness values for each bin will
indicate the azimuthal direction of arrival of acoustic wave energy
as φa = tan−1

(
py
px

)
. The parameters for the number of receivers

and their positions are in the data space of the transform, and are
determined by the geometry of the receiver array.

2.2. Beamforming

Beamforming is done by first applying the τ − p transform (2) to
the wavefield data recorded by receiver arrays. A weighting can be
applied in the τ −p space to select particular px and py slownesses,
which effectively translates to selecting energy by angles of arrival
of the sound waves. Note, that as a result of the air medium having
a near-constant acoustic velocity, this selection can be used to filter
acoustic energy coming from the vertical directions, as vertically
propagating arrivals will have a very low apparent horizontal slow-
ness on a planar, horizontal array. This is a useful attribute in the
autonomous driving case since the body of the car and its interaction
with the road surface emit vibrations and noise.

Wind noise and the vehicle’s self-noise can potentially have a
strong effect on the localization accuracy. However, mitigation of
these noises are not subjects of this paper.

3. ARRAY GEOMETRY OPTIMIZATION

We developed an array geometry optimization methodology for a
given, constant number of microphones, which takes into account

certain restrictions on microphone positioning. In comparison to
other stochastic array optimization methods such as [4], our method
caters to automotive OEMs by: a) splitting the singular array into
multiple interconnected, small sub-arrays with identical geometry,
b) taking into account the available physical installation surface,
and c) the constant number of microphones. The localization is then
derived from each sub-array and from the composite array defined
by the sub-arrays. Attending to these issues in the array design
process will have a direct effect on the total production costs.

3.1. Array optimization inversion

The optimization is a stochastic Monte Carlo inversion which also
utilizes simulated annealing. The model space is the τ − p domain
g (τ, px, py), and the data space are the recorded time series’ in the
x-y plane d (t, x, y). Equation (2) defines the adjoint operator F′

which inputs microphone array data and applies the τ−p transform:
g = F′d. The forward operation d = Fg inputs a model of a
sound event in the τ − p domain and outputs the data as it would be
recorded on the x-y plane.

The sampling of the slownesses px and py in the model space
are specified when running beamforming. However, the sampling
of the data space is determined by the microphone positions in the
array. We can represent the microphone geometry of the array as
a spatial sampling operator applied to the discretized data space
as Sd. The matrix S has ones at microphone coordinates and ze-
ros elsewhere. The adjoint operation is a cascade of two operators
g̃ = F′Sd, where g̃ is the estimated model given the sampling of
operator S.

For each sound arrival angle φ, we define an idealized, optimal
array response model in the τ − p domain as g0. We begin with an
initial array geometry determined by an initial sampling operator S.
The core of our methodology is in applying the forward and adjoint
operator to the optimal response model g0:

g̃ = F′Sd = F′SFg0. (3)

To resolve the DoA of acoustic energy we compute the RMS in
the τ − p domain along the τ axis:

m0 =

√√√√ 1

Nτ

Nτ∑
τ=0

g0(φ, τ, px, py)2 ,

m̃ =

√√√√ 1

Nτ

Nτ∑
τ=0

g̃(φ, τ, px, py)2.

(4)

where m0 is our “desired” model and m̃ is the estimated model
given the sampling S. The model dimensions are effectively φs ×
φa, where φs is the number of source angles we test for, and φa

is the number of angular bins we predetermine for beamforming.
Figure 2d shows the desired model m0, which effectively states our
desired angular resolution for each incidence angle.

The objective function that we wish to minimize is the L1
norm of the difference between the estimated model and the desired
model. Given the desired model m0, defining the objective func-
tion this way reduces angular localization error in practice. We also
apply a model-weighting matrix Wφs×φa to the objective function,
which enables us to prioritize resolution for some angles of arrival
at the expense of others:

J = ‖W (m̃−m0)‖1 . (5)
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It is common to measure the main Beam Width (BW) and the
Maximum Sidelobe Level (MSL) when estimating beamformer per-
formance. However, defining the objective function as in (5) en-
ables us to specify the both BW and MSL we wish to achieve ahead
of time, and integrate them into a single measure without explicitly
measuring these parameters at each iteration.

In the inversion process, the sampling operator S that specifies
the microphone positions is randomly modified at each iteration.
Certain restrictions to what random permutations are allowed: sub-
array size and permissible locations, the minimum distance between
microphones, and the maximum distance a sub-array may deviate
from its original position.

For each array geometry permutation (i.e., changes to S), we
apply the forward and adjoint operator as in (3) calculate a new
model m̃ as in (4), and subsequently a new value for the objective
function as in (5). The inversion seeks an array geometry that min-
imizes the objective function. The inversion’s outputs are the τ − p
model that has the minimum value of J and the sampling operator
S that produced this minimal value.

The objective function in (5) can be expanded using (3) as:

J =
∥∥W (

RMSτ

(
F′SFg0

)
− RMSτ (g0)

)∥∥
1
, (6)

where RMSτ indicates a root-mean-square operation along the τ
axis.
From this we observe that the role of the inversion is to produce a
sampling operator S that diagonalizes the forward and adjoint op-
eration, such that F′ ≈ (SF)−1.

4. ARRAY OPTIMIZATION FOR ROAD AUDIO

In this section, we address a particular scenario of mounting a mi-
crophone array on the roof of a car for the purpose of localizing
road audio.

4.1. Optimization setup

Before running the optimization, we first define the road objects we
wish to localize. Specifically, we are interested in localizing objects
such as emergency vehicles’ sirens and motorcycles, since audio-
based information regarding their positions on the road can have an
added value for autonomous vehicles, particularly in cases where
there is no line of sight.

Figure 2a is the mean spectra of road audio we observe in an
independently curated dataset containing traffic noise, motorcycles
and emergency vehicles’ sirens. In order to determine the DoA of
sounds from such road objects, the array must have a reasonable
angular resolution for a wide frequency band.

We ran the inversion where the input data frequency was as
shown in the blue curve in Figure 2b. Note that the input data have
a high-frequency bias, to account for the low-pass response of the
τ − p operator. After application of the τ − p operator during the
inversion process, the spectrum is shown by the red curve in Figure
2b, which encompasses most of the frequency band we observed in
our road-object dataset in Figure 2a.

The model weighting function is shown in 2c. This weighting
prioritizes resolution for audio events coming from 120o cones in
the front and rear of the vehicle.

Figure 2d is the desired model m0 for the array response. The
horizontal axis is the sound arrival angle, while the vertical axis is
the angle resolved by beamforming. This figure represents the result
we wish the inversion to lead to, namely an array response where

(a) (b)

(c) (d)

Figure 2: a) Spectrum of wavelet (blue curve) used in array opti-
mization inversion. Note that the low frequencies are purposefully
damped since the τ − p transform behaves as a low-pass filter (red
curve). b) Mean spectra of road audio objects from independently
curated dataset. c) Model weighting, where we prioritize angular
resolution for sound arrivals coming from a 120o cone in the front
and rear of the vehicle. d) The desired model m0, which specifies
the desired angular resolution for all sound source arrival angles φa.

the main-lobe width down to the -3dB point is about 20o. and where
there are no sidelobes.

4.2. Array geometry for vehicle roof mounting given automo-
tive design limitations

One emerging industry trend for installing sensory equipment on
autonomous vehicles is to place an additional enclosure on the
edges of the vehicle roof for housing the sensors. Therefore, we
defined 20 cm wide strips along the edges of a vehicle roof where
we would permit microphones to be situated, as shown in Figure 3a.

We defined four sub-arrays of three microphones each rather
than one large array. The reasoning behind using four sub-arrays
is because of the specific, low-cost recording hardware we intend
to use in our final product, Also, this arrangement enables a com-
promise between low-frequency angular resolution (which requires
larger distances between microphone) and high-frequency angular
resolution (which requires smaller distances). We also enforce a
rule that the sub-arrays must remain identical to each other in shape,
though they may rotate and translate independently within their as-
signed areas. This was done to reduce eventual microphone array
production costs, as it is simpler and cheaper to mass produce a
single sub-array design.

The initial array geometry is shown in Figure 3b, and the opti-
mized one in Figure 3c. Note that the coordinates in these Figures
are relative to the roof center shown in Figure 3a.
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(a) (b) (c)

Figure 3: a) Vehicle roof-edges mounting regions. Microphone sub-
arrays are permitted to be only between the larger and smaller red
rectangles, in 20 cm wide strips inward from the roof edges. b)
Initial array geometry. c) Optimized array geometry.

Figure 4a is the array response for the initial array geometry,
while Figure 4b is the optimized response. For each frequency
range we see a definite improvement in resolution, with narrower
main lobes and lower-amplitude sidelobes. The higher frequencies
have narrower main lobes than the low-frequencies, as we would
expect given the size limitations of the array.

Figures 5a and 5b are the summary of the frequency-dependent
main-lobe widths and sidelobe amplitudes, respectively. The main-
lobe width is measured in degrees down to the -3dB point from max-
ima of the main-lobe. We observe that for a frequency of 1000 Hz
(average frequency for sirens), the nominal main-lobe width is 60o.
The higher values are located between arrival angles 60o − 120o

and 240o−300o, which are the low-priority directions we specified
in the weighting function shown in Figure 2c. The sidelobes are at
least -2dB lower than the main lobe, even for the low frequencies.

The improvement in angular resolution of the array shown in
Figure 3c vs the initial geometry in Figure 3b is due to the irregu-
larity of the microphone positions in each sub-array, combined with
the irregularity of the array as a whole. The irregularity of geom-
etry effectively means that there is a greater variance of distances
between microphone pairs, and thus more wavelengths can be spa-
tially sampled by the array without aliasing. However, note that
irregularity was not explicitly imposed by the inversion, but rather
it is a consequence of our objective function that optimizes for an-
gular resolution.

5. CONCLUSION

In this article we used the Radon transform to solve a practical issue
of an optimal microphone array implementation on a vehicle. The
Radon transform is linear, which enabled us to combine the beam-
forming responses of more manageable sub-arrays while preserv-
ing the abilities of a large microphone array. Our experiment shows
that such an approach provides the desirable result while appeal-
ing to OEMs through reproducible small sub-arrays. The objective
function we used enables specification of the desired angular res-
olution for each source angle, therefore it is possible to prioritize
certain DoAs according to the desired application. The use-case we
envision for vehicle-mounted microphone array is for classification
and localization of road audio as part of the environmental inputs of
autonomous vehicles.

(a)

(b)

Figure 4: Array response in τ − p space for several frequency
ranges. Horizontal axis is the angle of the source sound arrival,
while the vertical axis is the beamforming angle achieved by apply-
ing the τ − p operator using the microphone array’s geometry. a)
Array response with initial geometry. b) Array reponse with opti-
mized geometry.

(a) (b)

Figure 5: Summary of optimized array response in terms of main-
lobe width and relative sidelobe amplitude for the frequency range
of the data. a) Main-lobe width down to the -3dB point in degrees.
b) Sidelobe amplitude relative to the main-lobe amplitude (i.e., -
2dB in the scalebar means 2 dB lower than the main lobe’s peak
amplitude)
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