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ABSTRACT

Representation learning, using self-supervised classification has re-
cently been shown to give state-of-the-art accuracies for anomaly
detection on computer vision datasets. Geometric transformations
on images such as rotations, translations and flipping have been
used in these recent works to create auxiliary classification tasks
for feature learning. This paper introduces a new self-supervised
classification framework for anomaly detection in audio signals.
Classification tasks are set up based on differences in the metadata
associated with the audio files. Synthetic augmentations such as
linearly combining and warping audio-spectrograms are also used
to increase the complexity of the classification task, to learn finer
features. The proposed approach is validated using the publicly
available DCASE 2020 challenge task 2: Unsupervised Detection
of Anomalous Sounds for Machine Condition Monitoring dataset.
We demonstrate the effectiveness of our approach by comparing
against the baseline autoencoder model, showing an improvement
of over 12.8% in the average AUC metrics using a MobileNetV2
based model. Ensembles of these models with our concurrently
published Group-Masked Auto-Encoder won the top 3 positions in
the DCASE 2020 challenge task 2.

Index Terms— Self-supervised anomaly detection, machine
audio, unsupervised anomaly detection, ArcFace

1. INTRODUCTION

Anomaly detection is a popular problem in machine learning, man-
ifesting in several different flavors across diverse applications. In
this work, our focus is on detecting anomalies in audio record-
ings. Given a training set with audio recordings labeled as “normal
sounds”, our goal is to flag sounds that are significantly dissimilar
to these normal sounds. Typical application include acoustic scene
monitoring systems, where unexpected/concerning events such as
glass breaking, gun shots, babies crying are needed to be detected
[1, 2, 3].

Early works in this field are based on supervised detection of
anomalies [4, 5]. However, one limitation of supervised anomaly
detection is that, in many practical applications, one may not have
access to all possible anomalous sounds at training time. A more
realistic assumption is that, we may have access to a collection of
what constitutes as “normal” sounds. It may then be possible to flag
events that are not seen in training as “anomalous”. The recently
released 2020 DCASE challenge introduces such a dataset, by com-
bining two recent audio datasets recorded from machines, namely
ToyADMOS [6] and MIMII [7]. The objective is to flag anomalous
machines in the test set, when the training set itself consists of audio
recordings from machines operating normally.

∗ Equal contribution.

Operation t c n s

Conv2D - 16 1 2
Bottleneck 1 8 1 1
Bottleneck 6 16 2 2
Bottleneck 6 16 3 2
Bottleneck 6 32 4 2
Bottleneck 6 48 3 1
Bottleneck 6 80 3 2
Bottleneck 6 160 1 1
Conv2D - 1280 1 1
Avg Pool - 1280 1 -
Dense - num classes 1 -

Table 1: MobileNetV2 architecture used in this work. Each line
describes a sequence of 1 or more identical (modulo stride) layers,
repeated n times. All layers in the same sequence have the same
number c of output channels. The first layer of each sequence has
a stride s and all others use stride 1. All spatial convolutions use 3
3 kernels. The expansion factor t is always applied to the input size
as described in [8]

The proposed approach in this paper is to use self-supervised
classification based on metadata accompanying the audio files, to
learn compact representations of the “normal” data. In different ap-
plications, this metadata could take various forms, such as locations
of the microphones relative to the source, information about the am-
bient settings, information about the source itself, etc. By learning
features, that can discern such “weak/auxiliary” labels that the au-
dio data is accompanied by, we may be able to learn fine enough
representations of the normal sounds to discern them from anoma-
lies. We show that using such metadata on the 2020 DCASE dataset,
yields significant improvements in the anomaly detection accuracy
over the challenge baseline, as shown in Table 2. We also introduce
a family of audio-inspired augmentations such as mix-up and spec-
tral warping to create additional data/metadata pairs, to increase the
complexity of the auxiliary classification task to learn finer features.

Outline: An overview of related prior works on self-supervised
representation learning is presented in Sec. 2. Following this, our
proposed approach is discussed in Sec. 3. Results are presented in
Sec. 4. Finally, Sec. 5 concludes the papers, and talks about some
future directions of this work.

2. PRIOR WORK

Within the framework of unsupervised representational learning,
self-supervision involves withholding certain aspects of the data,
and tasking a network to predict it. The features learnt by such a
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Algorithm ToyCar ToyConveyor Fan Pump Slider Valve

Baseline 78.77 (67.58) 72.53 (60.43) 65.83 (52.45) 72.89 (59.99) 84.76 (66.53) 66.28 (50.98)
MobileNetV2, no aug. 87.66 (85.92) 69.71 (56.43) 80.19 (74.40) 82.53 (76.50) 95.27 (85.22) 88.65 (87.98)
MobileNetV2, with aug. 88.60 (86.15) 78.36 (64.40) 80.61 (78.11) 83.23 (76.33) 96.26 (84.61) 91.26 (84.82)
MobileNetV2, with ArcFace 88.16 (85.13) 57.01 (53.79) 79.44 (75.47) 80.14 (72.87) 92.15 (85.41) 86.86 (86.10)
ResNet, no aug. 88.69 (86.15) 65.04 (61.71) 78.87 (74.43) 83.50 (80.00) 90.49 (74.51) 86.24 (84.24)
ResNet, with aug. 89.95 (87.88) 70.30 (58.50) 80.78 (74.69) 85.81 (79.80) 90.57 (74.03) 84.45 (80.89)
GroupMADE 80.51 (71.89) 76.03 (60.70) 70.10 (53.62) 75.68 (68.97) 93.29 (83.46) 89.68 (70.95)
ens: MobileNetV2 + ResNetV2 with aug
+ GroupMADE 95.57 (91.54) 81.46 (66.62) 82.39 (78.23) 87.64 (82.37) 97.28 (88.03) 98.46 (94.87)

Table 2: Results over the development dataset

network are then used for further downstream tasks.
A variety of auxiliary tasks have been used in prior works

for self-supervision, in many different applications. For example,
[9] uses predicting co-occurance of audio and video streams to
learn features, for applications such as source localization and ac-
tion recognition. Predicting relative positions of image and video
patches has been used in works such as [10, 11, 12]. Predicting
frame ordering is used in [13, 14], while impainting images with
missing patches is used in [15] to learn representations. A survey of
many other works on self-supervised learning is presented in [16].

Of particular relevance to this paper are prior self-supervision
works, that use classification based auxiliary tasks for learning fea-
tures for anomaly detection. For example, in [17, 18, 19], the learn-
ing tasks involve networks to discriminate between multiple geo-
metric transformations such as rotations, flipping and translations,
applied to images. A different approach is presented in [20], where
data is transformed onto a finite number of subspaces, before learn-
ing a feature mapping that maximizes the difference between inter-
class and intra-class separations.

We employ a different strategy here. We leverage accompany-
ing metadata, combined with different types of audio-inspired data
augmentations to set up various classification tasks. Specifically for
the DCASE dataset, for each machine type, we train networks on
the normal data from all the machine IDs to:

1. Identify the machine ID of an audio sample. Apart from the
provided samples, we also consider randomized linear com-
binations of the existing machine IDs to simulate new syn-
thetic machine IDs. The network is then tasked to identify
the mixing proportions of the original IDs.

2. Distinguish a sample from a set of synthetically perturbed
versions of it. We use spectral warping to create the pertur-
bations.

3. PROPOSED APPROACH

3.1. Auxiliary Tasks

In this subsection, we present the auxiliary classification tasks in
detail, that have been used to learn compact representations of the
normal data. For each machine type, we train a network to iden-
tify the machine ID that a recording belongs to. For example, for
machine type ToyCar, the DCASE challenge dataset consists of 7
machine IDs. We train a network to identify the ID that a training
sample belongs to. The softmax classification score of a test sam-
ple, measured at the output corresponding to its true machine ID, is

taken as a measure of a sample’s “inlier” score. Its negative is taken
as the anomaly score.

We use two additional variations of the above idea:

3.1.1. Linear Combination Augmentations

Data from different machine IDs are combined in pairs using ran-
domized linear combinations, and the network is trained to learn to
identify the mixing proportions. For example, for an input sam-
ple that is a mixture of (0.4 ∗ x1) + (0.6 ∗ x2), where x1 and
x2 are samples from IDs 1 and 2, the network is trained to out-
put [0.4, 0.6, 0, 0, . . .]. KL divergence is used as the loss for this
task. Linear combinations, both before and after taking the log, on
mel-spectrograms have been considered.

3.1.2. Spectral Warping Augmentation

We perturb samples from existing machine IDs to create new ma-
chine IDs, using image warping. Specifically, for each machine ID,
we synthesize two “perturbed machine ID”, by warping along the
frequency axis. Warping is performed using OpenCV’s geometric
image transformations, to map a frequency f in the original ma-
chine ID’s spectrogram to:

f → fmax ×
(

f

fmax

)α

(1)

where fmax is the largest frequency in the spectrogram. The pa-
rameter α was chosen as 0.95 and 1.05 for the two perturbed classes
respectively.

Augmentations have been widely used in prior audio process-
ing literature, mostly in classification settings. A set of spectral
augmentations that involve time warping, frequency masking, and
time masking for audio were recently proposed in [21]. These were
extended in [22] to include frequency warping, loudness control,
and time length control. The frequency warping proposed therein
is different from ours, and involves shifting a selected frequency
by a fixed amount. Time stretching, pitch shifting, dynamic range
compression and background noise were used in [23, 24]. In our ex-
periments, we tried various pitch shifting and time stretching aug-
mentations, but they did not improve the accuracy further than what
could be achieved by the simple frequency warping we described
above.

An important practical question is, are there criteria that can be
used to predict which types of augmentations would work well for
anomaly detection? We used the following insight: For anomaly
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Figure 1: Per-ID ToyCar t-SNE plots of (left) the 64×128 input spectrograms and (right) 1280×1 features leant by the MobileNetV2 model
trained without any augmentations. The AUC(pAUC) numbers are also shown for each machine ID. Blue points are normal samples, while
the orange ones are the anomalous ones.

detection, the motivation for augmentations is quite different from
that in classification settings. The augmentations referenced above
were mostly used in classification settings in prior works, where
they are meant to increase the robustness of a classifier to pertur-
bations. However, in anomaly detection, especially in the way we
used augmentations here, they are meant to increase the sensitivity
of the models to fine differences in the inputs. If the perturbations in
the augmentations are “too obvious”, then the self-supervisied clas-
sification task is too easy, and the model does not learn any finer
discriminative features. For instance, while frequency masking and
time masking were found to be very useful in [21], they were not
very beneficial in our experiments here. In comparison, the more
subtle frequency warping described in Eq. (1) was more useful.

3.2. Classifier Architectures

For the classification task, we employ two different architectures;
MobileNetV2 and ResNet-50. MobileNetV2 is introduced in [8]
as a computationally efficient convolutional neural network for vi-
sual recognition tasks such as object detection, classification and
semantic segmentation. We use off-the-shelf Keras implementation
of MobileNetV2, with the width multiplier parameter set to 0.5 .
We set the “weights” argument as None while invoking the Mo-
bileNetV2 model to train it from scratch with random initialization.
A summary of the architecture is given in Table 1.

The ResNet-50 [25] (Residual Network) model consists of 5
stages each with a convolution and Identity block. Each convo-
lution block has 3 convolution layers and each identity block also
has 3 convolution layers. For ResNet-50, we also use an off-the-
shelf Keras implementation. Similar to the MobileNetV2 model,
the ResNet-50 model is also trained from scratch with random ini-
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Machine Type Augmentation Loss Epochs

ToyCar post-log linear combinations, spectral warping KL-divergence 20
ToyConveyor pre-log linear combinations KL-divergence 10
Fan pre-log linear combinations KL-divergence 10
Pump post-log linear combinations, spectral warping KL-divergence 20
Slider pre-log linear combinations KL-divergence 10
Valve post-log linear combinations KL-divergence 10

Table 3: Combinations of augmentations that gave best results on DCASE 2020 challenge dev dataset.

tialization.
Even though, the Keras implementation of both the models al-

lows one to load the pre-trained ImageNet weights, we do not use
it because our aim is to learn features that are specific to different
machine IDs, whereas ImageNet based initialization will force the
model to learn more generic image classification related filters, for
example edge detectors, which is not optimal for our task.

3.3. Inputs

The inputs to the classifier models are 64× 128 images, which are
the log-mel spectrograms, computed using the following parame-
ters:

1. Each input 10s file is split into frames of length 64ms, with
hop length of 32ms between frames.

2. 1024-FFT and 128 mel bins are used to featurize each frame.

3. 64 featurized frames are stacked to form a 64× 128 image.

4. Successive 64× 128 images have an overlap of 56 frames.

3.4. Additive Angular Margin (ArcFace) Loss

We also experiment with, recently proposed Additive Angular Mar-
gin Loss (ArcFace) for classifier models instead of traditional soft-
max loss to increase the discriminative power of the feature embed-
dings learned by the deep convnet models. Specifically this loss
function helps our model to learn features that enhance the intra-
class compactness along with the inter-class discrepancy. Details of
this loss function can be found in the original paper [26]. ArcFace
is used for the task of identifying machine ID of an audio sample.

4. RESULTS

Table 2 shows the receiver operating characteristics curve’s area un-
der curve (AUC) and partial area under curve (pAUC) [27] obtained
on the DCASE challenge dataset. The development subset of the
dataset is used in the results shown. For different machine types,
different combinations of the augmentations mentioned above are
observed to give the best results. The “with augmentations” results
shown in Table 2 for MobileNetV2 are obtained using the augmen-
tations indicated in Table 3. The benefits of augmentations are par-
ticularly evident for the ToyConveyor class. For ResNet, the “with
augmentations” results were obtained using post-log linear combi-
nations. The networks are trained using the ADAM optimizer, with
a learning rate of 0.0001. The auxiliary classification task was ob-
served to quickly converge for certain machine types. The number
of epochs is varied across machine types accordingly, as shown in
Table 3, to avoid over-fitting. For the ArcFace results shown in

Table 2, the over-fitting problem is not as evident, and fixing the
number of epochs at 25 for all machine types seem to suffice.

Fig. 1 shows t-SNE [28] plots of features extracted from four
machine IDs from the ToyCar set, using the MobileNetV2 archi-
tecture and no augmentations. For machine IDs 02, 03 and 04, the
separation between the normal and anomalous test samples is ev-
ident. For ID 01, self-supervised models do not perform as well.
The AUC and pAUC numbers, also shown in Fig 1, also reflect
this. To obtain these plots, 5000 normal points are sampled from
the union of training and test sets, and 5000 anomalous points are
sampled from the test set. For comparison purposes we also present
the t-SNE plots of the 64 × 128 input log mel spectrograms, and
the separation between normal and anomalous samples is evident in
learned embedding space.

4.1. Ensembling with Group-MADE

In our experiments, we observe that the self-supervised approach
described above performs very well when ensembled with other
anomaly detection approaches. For instance, [29] proposes a
Group-Masked Autoencoder based Density Estimation (Group-
MADE) approach for audio anomaly detection. It is observed that
ensembling the Group-MADE approach with the self-supervised
approaches yields the best results in our experiments on all machine
types. The ensmebling is done in the following fashion: we trans-
form the anomaly scores of each model into a standardized scale,
before combining them. The standardization transformation for any
given model is applied in a per-machine ID fashion, by computing
the mean and variance of its anomaly scores over the training data
for that machine ID. The anomaly scores are then transformed to
have zero mean and unit variance over the training data of that ma-
chine ID. Standardized anomaly scores across different models are
then combined using mean or max ensembling. Table 2 shows the
results of ensembling across multiple MoblieNetV2, ResNet-50 and
Group-Made models for each machine type.

5. CONCLUSION

In this paper, a self-supervised classification based approach is pre-
sented for detecting anomalous sounds from machines. The classi-
fication task learns features that are discriminative enough to iden-
tify the multiple individual machine IDs within any given machine
type. The proposed models significantly outperform the baseline
autoencoder based approach that was provided by the challenge au-
thors. Synthesizing the new data by taking linear combination of
data from existing machines, as well as by warping the spectro-
grams, is employed to further increase the complexity of the self-
supervised task.
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