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ABSTRACT

Audio source separation is the process of separating a mix-
ture into isolated sounds from individual sources. Deep
learning models are the state-of-the-art in source separation,
given that the mixture to be separated is similar to the mix-
tures the deep model was trained on. This requires the end
user to know enough about each model’s training to select
the correct model for a given audio mixture. In this work, we
propose a confidence measure that can be broadly applied to
any clustering-based separation model. The proposed confi-
dence measure does not require ground truth to estimate the
quality of a separated source. We use our confidence mea-
sure to automate selection of the appropriate deep clustering
model for an audio mixture. Results show that our con-
fidence measure can reliably select the highest-performing
model for an audio mixture without knowledge of the domain
the audio mixture came from, enabling automatic selection
of deep models.

Index Terms— source separation, deep learning, perfor-
mance prediction, ensemble methods, deep clustering

1. INTRODUCTION

Audio source separation is the process of separating a mix-
ture into isolated sounds from individual sources. It enables
tasks where it would be valuable to attend to or manipulate
individual sounds in a mixture. Examples include automatic
speech recognition with multiple speakers, music manipula-
tion, and content-based audio search.
Deep learning models are state-of-the-art for source separa-
tion, given that the mixture to be separated is similar to the
mixtures the model was trained on [1]. Unfortunately, a deep
separation model trained on one domain does not generalize
well to others. For example, using a model trained on music
examples to isolate a single voice from a recording of multi-
ple concurrent voices will not produce usable results. Thus,
the end user must know enough about each model’s training
to select the appropriate model for a given audio mixture.
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Figure 1: Overview of our system. The mixture is passed
through three deep source separation models, each trained on
a different domain (speech, music, environmental sounds).
We use the confidence measure to select which of the three
model outputs to use as the final estimates.

This limits how models can be deployed and imposes a bot-
tleneck on adding source separation to an automation chain.
A method to automatically select the best model for the cur-
rent mixture would transform the range of applications where
source separation can be applied. For example, imagine a
hearing aid that automatically switches models when the user
moves from an outdoor construction site (a model trained
to separate speech from environmental noise) to an indoor
restaurant (a model trained to separate speech from speech).
Moreover, simply knowing when no source separation model
available for the current audio scene is useful. When source
separation would produce inappropriate output that might be
worse than not applying separation at all, a device could sim-
ply turn off source separation.
In this work, we develop a confidence measure that can be ap-
plied to systems that perform clustering on embedding spaces
to do source separation, as embodied by the family of deep
clustering [2] methods. These have been among the most
successful source separation approaches in recent years [3,
4]. We use this confidence measure to automatically select
the model output with the best predicted separation quality.
A system overview is shown in Figure 1.
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Figure 2: 2D visualization of the embedding of a single music mixture produced by three different models. Visually, the
embedding of the music model is far more clusterable than the speech and environmental model. Therefore the mixture may be
easier to separate with the music model.

2. PRIOR WORK

Kim et al. [5] produces a selection method for speech en-
hancement by training an ensemble of autoencoders and se-
lecting the model with the lowest reconstruction error. While
speech enhancement is related to source separation, the un-
derlying assumption is that the desired signal constitutes the
majority of the audio. Since, source separation requires re-
moval of large portions of the input audio, low reconstruction
error does not correspond to good source separation.
In computer vision, failure detection has employed a measure
of confidence that is learned during training [6] or by com-
paring the the input image to the training data [7, 8]. Our
work is for audio, does not require a specific model for error
estimation, and does not need access to the training distri-
bution. The clusterability of audio representations was con-
sidered in [9], where clusterability was computed when the
information about true label assignments is already known.
Here we use unsupervised clusterability measures where the
label assignments are estimated.
There has been work in combining multiple algorithms for
source separation [10, 11, 12]. In particular, [13] trained
a separate deep net to estimate source separation quality in
order to guide switching between separation algorithms. In
contrast, our confidence measure does not require any train-
ing. Moreover, all of these ensemble methods were applied
to multiple methods that work for one application domain
(e.g. two separation approaches, both applied to speech sepa-
ration) whereas our method chooses which model is the most
appropriate for a given mixture across multiple domains. Our
confidence measure builds on the one in [14], which was de-
signed to predict the performance of a direction-of-arrival
algorithm for source separation. In that work, the confi-
dence measure was designed particularly for speech mixtures

and required the clustering to be based on Gaussian Mixture
Models. The confidence measure here can be applied any-
where that embedding spaces are clustered. In this paper we
apply it to an ensemble of deep clustering networks.

3. PROPOSED METHOD

3.1. Deep clustering

In deep clustering, a neural network is trained to map each
time-frequency bin in a magnitude spectrogram of an audio
mixture to a higher-dimensional embedding, such that bins
that primarily contain energy from the same source are near
each other and bins whose energy primarily come from dif-
ferent sound sources are far from each other. Given a good
mapping, the assignment of bin to source can then be deter-
mined by a simple clustering method, such as K-Means. All
members of the same cluster are assigned to the same source.
Because deep clustering performs separation via clustering,
our method relies on an analysis of the embedding space pro-
duced by deep clustering to establish a confidence measure.

3.2. Confidence measure

The core insight behind the confidence measure is that the
distribution of the embedded time-frequency points of a mix-
ture is predictive of the performance of the algorithm. Figure
2 shows a visualization of the confidence measure as applied
to the distribution of points in a mixture produced by three
trained deep clustering networks, each trained on a differ-
ent domain. The input is a music mixture. The speech (left)
and environmental (right) models return distributions with no
clear clusters. The music model (middle) shows a more clus-
terable distribution, which is reflected by a higher confidence

92



Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

score. The confidence measure C(X) combines the silhou-
ette score S(X) and posterior strength P (X) through multi-
plication so that it is high only when both are high. That is,
C(X) = S(X)P (X).

3.2.1. Silhouette score

The silhouette score [15] captures how far apart clusters are
(intercluster distance) and how dense they are (intracluster
distance). Define X as the set of embeddings for every time-
frequency point in an audio mixture, where xi is the em-
bedding of one point. X is partitioned into K clusters Ck:
X =

⋃K
k=1 Ck. Given a data point xi assigned to cluster Ck:

a(xi) =
1

|Ck| − 1

∑
xj∈Ck,
xi �=xj

d(xi, xj) (1)

b(xi) = min
��=k

1

|C�|
∑

xj∈C�

d(xi, xj) (2)

Here, the intracluster distance a(xi) is the mean distance (us-
ing a distance function d) between xi and all other points in
Ck, and the intercluster distance b(xi) is the mean distance
between xi and all the points in the nearest cluster C�. Com-
pute the silhouette score of xi

s (xi) =
b (xi)− a (xi)

max {a(xi), b (xi)}
(3)

Note s(xi) ranges from −1 to 1. In the silhouette score, ev-
ery point in every cluster must be compared to every point
in every other cluster. Since a time-frequency representation
can easily contain upwards of a million points, computing
the silhouette score for every point in embedding space is in-
tractable. Therefore, we select a constant number of points
(N = 1000) from the loudest 1% of all time-frequency bins.
This is because the assignment of louder time-frequency bins
is more important perceptually than softer time-frequency
bins. We take the mean silhouette score across the sample
to estimate the silhouette score S(X) for the mixture.

3.2.2. Posterior strength

For every point xi in a dataset X , the clustering algorithm,
soft K-Means, produces γik ∈ [0, 1], which indicates the
membership of the point xi in some cluster Ck, also called
the posterior of the point xi in regards to the cluster Ck. The
closer that γik is to 0 (not in the cluster) or 1 (in the cluster),
the more sure the assignment of that point. We compute the
posterior strength of xi as follows:

P (xi) =

K

(
max

k∈[0,...,K]
γik

)
− 1

K − 1
(4)

Figure 3: Relationship between confidence measure and ac-
tual performance based on SDR. Each dot represents a sepa-
rated source by the speech model. The blue line is the line of
best fit found via linear regression.

The equation maps points that have a max posterior of 1
K

(equal assignment to all clusters) to 0, and points that have a
max posterior of 1 to 1. The overall posterior strength P (X)
is the mean P (xi) for the loudest 1% of time-frequency bins.
We apply this in conjunction with the silhouette score to pre-
dict separation performance across multiple domains. An im-
plementation is available1 and integrated into nussl [16].

4. EXPERIMENTAL DESIGN

Our experiments are designed to investigate two facets of the
proposed confidence measure. The first is whether or not the
confidence measure correlates with ground truth separation
performance, measured via signal-to-distortion ratio (SDR)
[17]. The second is whether we can use the confidence mea-
sure to choose the appropriate deep clustering model given
an audio mixture that comes from any of the three domains
we consider: environmental, speech, and musical sounds.
Within each audio domain, we consider a specific task. For
speech, the task was to separate two speakers talking simul-
taneously. For music, the task was to separate singing voice
from accompaniment (drums, bass, and other instruments).
For environmental sounds, the task was to separate two en-
vironmental sounds from one another (e.g. isolating a dog
bark from a car horn). For each domain, we trained a source
separation network with a deep clustering objective. Each
network is identical, consisting of 2 BLSTM layers with 300
hidden units in both directions. The embedding size of each
network is 20 with sigmoid activation and is trained for 80
epochs with the Adam optimizer [18] (learning rate of 2e-4).
We create a dataset for each domain. The speech dataset is
constructed using the Wall Street Journal dataset [19], the

1https://git.io/Jf3y5
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Domain Speech Music Environ.
Speech 2186 25 31
Music 717 2950 1235
Environ. 97 25 1734

Total 3000 3000 3000

Table 1: Confusion matrix comparing the true domain with
the domain-specific model selected by the confidence mea-
sure. We see that the ensemble fairly reliably picks the cor-
rect model for each domain (the diagonal of the confusion
matrix).

music dataset from the MUSDB dataset [20], and the envi-
ronmental dataset from the UrbanSound8k dataset [21].
The Wall Street Journal dataset consists of utterances from
119 speakers. These speakers are split into train, validation,
and test sets by prior work [2]. The test set contains utter-
ances from speakers that are not in either the train or valida-
tion set (referred to as the open speaker set). We use these
splits when creating our speech mixtures dataset.
The MUSDB music dataset has four isolated stems for each
song: vocals, drums, bass, and other. We define the accom-
paniment as the sum of the drums, bass, and other stems. The
network is trained to separate the vocals from the accompa-
niment given the music mixture. MUSDB comes split into
train, validation, and test sets.
The UrbanSound8k dataset has 10 sound classes: air condi-
tioner, car horn, children playing, dog bark, drilling, engine
idling, gun shot, jackhammer, siren and street music. We use
5 classes which do not contain stationary noise: car horn, dog
bark, gun shot, jackhammer, siren. The other sound classes
are polyphonic or multisource (e.g. children playing contains
cars in the background) and are excluded from experiments.
UrbanSound8k comes split into 10 folds. We use folds 1-8
for training sources, 9 for validation, and 10 for testing.
We downsample all audio to 16 kHz sample rate to reduce
computational costs. For each dataset, we made 5-second
mixtures with 2 sources each using Scaper [22]. For Wall
Street Journal and UrbanSound8k, the 2 sources were mixed
at a random signal-to-noise ratio (SNR) between −2.5 and
2.5 dB, relative to each other. For MUSDB, the vocals were
mixed at an SNR of 10 dB relative to the accompaniment.
For each domain, we made 20000 mixtures for training, 5000
for validation, and 3000 for testing.

5. RESULTS

First, we investigate whether the confidence measure corre-
lates well to ground-truth performance in terms of SDR for
a single model. Figure 3 shows a clear relationship between

Approach Speech Music Environ.
Oracle ensemble 8.3 6.5 12.2
Confidence ensemble 7.6 6.4 10.5
Random ensemble 4.8 4.2 2.8

Speech model 8.2 2.0 3.0
Music model 1.4 6.5 2.5
Environ. model 2.1 1.7 11.9

Table 2: Performance (mean SDR) of different approaches
on test datasets from three domains. Higher values are bet-
ter. The top three rows correspond to the different ensem-
bles. The bottom three rows show the result of using a single
model across all the domains.

confidence and SDR for speech mixtures separated by the
speech model. We see that both confidence and performance
are a function of the mixture type: same-sex mixtures are
harder to separate. This was also observed by [23], where
they used domain-specific knowledge about the psycho-
acoustic differences between male and female speech. Here,
we have uncovered that same relationship only by analyz-
ing the clusterability of embeddings. We observe similarly
strong correlations on the music (r-value of .46) and envi-
ronmental (r-value of .70) domains.
Next, we compare the confidence-based ensemble approach
with other approaches to separating each dataset. The top
three rows of Table 2 show the performance of three ensem-
ble approaches. Oracle, which switches with knowledge of
the best system, is the upper bound. Random, which selects
randomly with equal probability, is the lower bound. Con-
fidence uses our confidence measure to select the model: in
this method, all three models are run and confidence mea-
sures are computed for each separation, and the output with
the highest confidence is chosen.
We observe that the confidence-based ensemble significantly
outperforms the random ensemble. In the case of music
mixtures, the confidence-based model achieves almost ora-
cle performance. In Table 4, we show a confusion matrix
to compare the true domain with the predicted domain. The
precision of picking the best model when the best model is
speech, music, and environmental sound are .97, .60, and
.93, respectively. The recall rates are .72, .98, and .57.

6. CONCLUSION

We have presented a method for constructing ensembles of
deep clustering models by using off-the-shelf clustering anal-
ysis techniques such as the silhouette score and posterior
analysis. This confidence measure can be applied to ensem-
bles of any clustering-based separation algorithms. Our work
can be integrated into interfaces that use source separation
by easing the burden on the user for selecting an appropriate
model, as well as alerting them to system failure.
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