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ABSTRACT
Sound event localization and detection consists of two subtasks
which are sound event detection and direction-of-arrival estimation.
While sound event detection mainly relies on time-frequency pat-
terns to distinguish different sound classes, direction-of-arrival esti-
mation uses magnitude or phase differences between microphones
to estimate source directions. Therefore, it is often difficult to
jointly train two subtasks simultaneously. Our previous sequence
matching approach solved sound event detection and direction-of-
arrival separately and trained a convolutional recurrent neural net-
work to associate the sound classes with the directions-of-arrival us-
ing onsets and offsets of the sound events. This approach achieved
better performance than other state-of-the-art networks such as the
SELDnet, and the two-stage networks for static sources. In order to
estimate directions-of-arrival of moving sound sources with higher
required spatial resolutions than those of static sources, we propose
to separate the directional estimates into azimuth and elevation esti-
mates before passing them to the sequence matching network. Ex-
perimental results on the new DCASE dataset for sound event local-
ization, detection, and tracking of multiple moving sound sources
show that the sequence matching network with separated azimuth
and elevation inputs outperforms the sequence matching network
with joint azimuth and elevation input. We combined several se-
quence matching networks with the new proposed directional inputs
into an ensemble to boost the system performance. Our proposed
ensemble achieves localization error of 9.3◦, localization recall of
90%, and ranked 2nd in the team category of the DCASE2020
sound event localization and detection challenge.

Index Terms— CRNN, DCASE, direction-of-arrival estima-
tion, sequence matching network, sound event detection.

1. INTRODUCTION

Sound event localization and detection (SELD) has many applica-
tions in urban sound sensing [1], wild life monitoring [2], surveil-
lance [3], autonomous driving [4], and robotics [5]. The SELD
task recognizes the sound class, and estimates the direction-of-
arrival (DOA), the onset, and offset of a detected sound event [6].
Polyphonic SELD refers to cases where there are multiple sound
events overlapping in time. DCASE2020 challenge introduces a
new SELD dataset with multiple moving sound sources [7]. Many
existing SELD algorithms are frame-based, therefore they extend
naturally to the additional task of tracking moving sound sources.

∗This research was supported by the Singapore Ministry of Education
Academic Research Fund Tier-2, under research grant MOE2017-T2-2-060.

SELD consists of two subtasks, which are sound event detec-
tion (SED) and direction-of-arrival estimation (DOAE). In the past
decade, deep learning has achieved great success in classifying, tag-
ging, and detecting sound events [8]. The state-of-the-art SED mod-
els are often built from convolutional neural networks (CNN) [1],
recurrent neural networks (RNN) [9], and convolutional recurrent
neural networks (CRNN) [6, 10]. DOAE tasks for small-aperture
microphone arrays are often solved using signal processing algo-
rithms such as minimum variance distortionless response (MVDR)
beamformer [11], and multiple signal classification (MUSIC) [12].
To tackle the multi-source cases, many researches exploit the non-
stationarity and sparseness of the audio signals to find the single-
source time-frequency (TF) regions on the spectrogram to reliably
estimate DOAs [14, 15, 16]. Recently, deep learning has also been
successfully applied to DOAE tasks [17, 18], and the learning-based
DOA models show good generalization to different noise and rever-
beration levels. However, the angular estimation error is still high
for multi-source cases.

To solve SELD problem, Adavanne et al. proposed a single-
input multiple-output CRNN model called SELDnet that jointly
detects sound events and estimates DOAs [6]. Because SED and
DOAE requires different acoustic information from the audio in-
puts, the joint estimation affects the performance of both tasks. To
mitigate this problem, Cao et al. proposed a two-stage strategy for
training SELD models [20]. This training scheme significantly im-
proves the performance of the SELD system. However, the DOA
model is still dependent on the SED model for detecting the active
signals, and the network learns to associate specific sources with
specific directions in the training data.

Our previous research proposed a novel two-step approach that
decoupled the learning of the SED and DOAE systems [22]. In
the first step, we used Cao’s CRNN model [20] to detect the sound
events, and a single-source histogram method [15] to estimate the
DOAs. In the second step, we trained a CRNN-based sequence
matching network (SMN) to match the two output sequences of the
event detector and DOA estimator. The motivation of this approach
is that overlapping sounds often have different onsets and offsets.
By matching the onsets, the offsets, and the active segments in the
output sequences of the sound event detector and the DOA esti-
mator, we can associate the estimated DOAs with the correspond-
ing sound classes. This modular and hierarchical approach signif-
icantly improved the performance of the SELD task across all the
evaluation metrics. We extend our two-step method for SELD of
dynamic sound sources using the new DCASE2020 SELD dataset.
Compared to the static-source cases, the dynamic-source cases re-
quire a higher azimuth and elevation resolutions. The azimuth and
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Table 1: A CRNN-based SED network for 14 sound classes
Stage Layer description
conv1 (conv2d 64 3x3, BN, ReLu) x 2, 2x2 average pooling
conv2 (conv2d 128 3x3, BN, ReLu) x 2, 2x2 average pooling
conv3 (conv2d 256 3x3, BN, ReLu) x 2, 2x2 average pooling

pooling average pooling frequency dimension
GRU bidirectional GRU 128
FC dropout(0.2), FC 14, sigmoid

total parameters 1454122

elevation resolutions of the DCASE2020 and DCASE2019 SELD
dataset are 1◦ and 10◦, respectively. This high angular resolution
significantly increases the dimension of the joint 2D single-source
histogram that are used as input features to the SMN. Even if we
use a resolution of 5◦, the angular dimension of the 2D histogram
of the dynamic dataset is 1368 compared to 324 of the static dataset.
The large dimension of the 2D histogram is not optimal to train the
SMN, therefore we proposed to use marginal 1D histograms of az-
imuth and elevation instead of the joint 2D azimuth-elevation his-
togram as inputs to the SMN. In addition, to boost performance, we
combined several SED models into a SED ensemble to train sev-
eral SMN models, which in turn were combined to form a SMN
ensemble. The rest of our paper is organized as follows. Section II
describes our SMN network for SELD. Section III presents the ex-
perimental results and discussions. Finally, we conclude the paper
in Section IV.

2. SEQUENCE MATCHING NETWORK FOR SOUND
EVENT LOCALIZATION AND DETECTION

Figure 1 shows the block diagram of a SMN for SELD. The SED
network is similar to the one proposed by Cao et al [20]. The
DOAE module uses a non-learning signal processing approach to
robustly estimate the DOAs of sound sources regardless of the
sound classes [15]. The output sequences of the SED network and
DOAE module are the inputs of the SMN. The SMN uses CNN lay-
ers to learn patterns on the azimuth and elevation histogram before
concatenating them with the SED inputs. A bidirectional gated re-
current unit (GRU) is used to match the DOA and SED sequences.
Fully connected (FC) layers are used to produce the final SELD es-
timates. The SED subtask is formulated as multi-label multi-class
classification. The DOAE subtask is formulated as regression of the
Cartesian coordinates on a unit sphere.

2.1. Sound event detection

We use a CRNN-based SED network that uses log-mel spectrogram
as input features. Our experimental results show that spatial fea-
tures such as GCC-PHAT and intensity vector are not helpful for
detecting multiple moving sound sources. To improve the SED per-
formance, we use various data augmentation methods such as ran-
dom cut-out, erasing columns of time steps and rows of frequency
bands [24], mixup, and frequency shift.

The SED base network consists of 6 CNN layers, 1 bidirec-
tional GRU layer, and 1 FC layer as shown in Table 1. The SED is
formulated as multi-label multi-class classification. We use the raw
probability outputs of the SED network as the input to the SMN in
step 2. We modify the base SED network in term of pooling size
and number of filters to produce several variants. The outputs of
these models are averaged to produce an SED ensemble.

2.2. Direction-of-arrival estimation

We use a single-source (SS) histogram algorithm proposed in [15]
to estimate DOAs. The SS histogram finds all the time-frequency
(TF) bins that contain energy from mostly one source by using three
tests: magnitude, onset, and coherence test. Magnitude test finds the
TF bins that are above a noise floor to mitigate the effect of back-
ground noise. Onset test finds the TF bins that belong to direct-
path signals to reduce the effect of reverberation. Coherence test
finds the TF bins of which the covariance matrices are approxi-
mately rank-1. DOA at each SS bin is computed using the theo-
retical steering vector of the microphone array [15]. These DOAs
are discretized using the required resolution of azimuth and eleva-
tion angles. Subsequently, these DOAs are populated into 2 1D his-
tograms, one for azimuth, one for elevation. Our experimental re-
sults show that DOA estimation without onset slightly increase the
DOA frame recall but slightly increase the DOA error. The overall
SELD error is improved without onset detection. Therefore we do
not use onset detection in our final models. A resolution of 5◦ for
both azimuth and elevation are used to estimate the 1D azimuth and
1D elevation histogram. The sizes of the azimuth and elevation his-
tograms for each time frame are 72 and 19, respectively. If a joint
azimuth and elevation histogram was used, the angular dimension
would be 72 × 19 = 1368. The 1D histograms significantly com-
press the input dimension. As a result, the SMN is less prone to
over-fitting and it takes much shorter time to train the network. The
downside is we lose the jointly occurrence of azimuths and eleva-
tions. However, this co-occurrence will be recovered by the SMN.
Fig. 2 shows the estimated azimuth and elevation histograms for a
two-source 60-s audio clip. Visually, the SS histogram algorithm
accurately estimates the azimuths with clear onsets and offsets for
moving sound sources even for narrow angular distances. The ele-
vation estimates are more blurry than the azimuth estimates.

2.3. Sequence matching network

SMN is a multiple-input multiple-output CRNN. The input features
to the SMN are the SED prediction probabilities, 1D azimuth and
1D elevation histograms. The outputs of the SMN are the SED clas-
sification probabilities and the regressed DOA Cartesian coordinate
on the unit sphere. Similar to the baseline, our experimental re-
sults show that regression using Cartesian coordinate format results
in lower DOA errors than spherical coordinate format. One reason
might be the discontinuity of azimuth at 180◦ and −180◦. Cross-
entropy loss is used for SED classification, while mean square error
loss is used for DOA regression. Table 2 shows the details of the
SMN. We train the base SMN with different input lengths of 4, 6, 8,
10, and 15 seconds and combine these different models into a SMN
ensemble by averaging the SED and DOA outputs. In addition, we
also train the SMN model to predict the number of sound events for
each frame. This auxiliary task helps regularize the model.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

We used the FOA format of the DCASE2020 SELD dataset [7] for
our experiments. The SELD development dataset consists of 400,
100, and 100 one-minute audio clips for training, validation, and
testing, respectively. There are 14 sound classes. The sound dura-
tions are between 0.3 and 15 seconds. The azimuth and elevation
ranges are [−180◦, 180◦) and [−45◦, 45◦], respectively. We used
azimuth and elevation resolutions of 5◦.
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Figure 1: Block diagram of the two-step sound event localization and detection. Step 1: SED network and DOA module generate SED and
DOA output sequences ( 1D azimuth and elevation histograms for each time step). Step 2: Sequence matching network matches the sound
classes, azimuths and elevations for detected sound events. nframes is the number of time frames of one training samples, nclasses is the
number of sound classes, nazis is the number of azimuths, and neles is the number of elevations.

(a) Azimuth ground truth

(b) 1D azimuth histogram

(c) Elevation ground truth

(d) 1D elevation histogram

Figure 2: 1D azimuth and elevation histograms of a two-source au-
dio clip. The classes are color coded in the ground truths.

3.1. Evaluation metrics

While the 2019 SELD evaluation metrics evaluated the SED and
DOAE subtasks separately, the 2020 SELD evaluation metrics take
into account the correct association between sound classes and
DOA [25]. A sound event is considered a correct detection if it has
correct class prediction and its estimated DOA is less than 20◦ from
the DOA ground truth. Since we solved SED and DOAE separately
before joining them, both 2019 and 2020 evaluation metrics were
used in our experiments. The 2019 version was used to evaluate the
performance of SED networks and DOAE modules separately. The

Table 2: A CRNN-based SMN network. The table entries are not in
sequence. Refer to Fig.1

Stage Layer description
azi conv1 (conv2d 16 3x3, BN, ReLu) x 2, 2x2 average pooling
azi conv2 (conv2d 32 3x3, BN, ReLu) x 2, 2x2 average pooling
azi conv3 (conv2d 64 3x3, BN, ReLu) x 2, 2x2 average pooling
azi conv3 (conv2d 96 3x3, BN, ReLu) x 2, 2x2 average pooling

azi pooling average pooling angle dimension and upsampling
ele conv1 (conv2d 8 3x3, BN, ReLu) x 2, 2x2 average pooling
ele conv2 (conv2d 16 3x3, BN, ReLu) x 2, 2x2 average pooling
ele conv3 (conv2d 32 3x3, BN, ReLu) x 2, 2x2 average pooling
ele conv3 (conv2d 64 3x3, BN, ReLu) x 2, 2x2 average pooling

ele pooling average pooling angle dimension and upsampling
concatenate SED , azimuth feature, elevation feature

GRU (bidirectional GRU 128) x 2
SED FC dropout(0.2), FC 14, sigmoid

DOA-x FC dropout(0.2), FC 14
DOA-y FC dropout(0.2), FC 14
DOA-z FC dropout(0.2), FC 14

total parameters 829427

2020 version was used to evaluate the performance of the SMNs.

3.2. Hyper-parameters and training procedure

Hyperparamters for processing audio signals were sampling rate of
24 kHz, window length of 1024 samples, hop length of 300 sam-
ples (12.5 ms), Hann window, and 1024 FFT points. 128 mel bands
were used to extract log-mel features. For the SS histogram estima-
tion, we used magnitude signal-to-noise ratio of 1.5 for the magni-
tude test, and a condition number of 5 for the coherence test. Adam
optimizer was used to train the SED and SMN models. We trained
the SED and SMN models for 50 and 60 epochs, respectively. The
learning rate set to 0.001 for the first 30 epochs and reduced by 10%
for each subsequent epoch until it reaches 0.0001. Based on vali-
dation result, a threshold of 0.3 was used to decide active classes in
the SED outputs. The corresponding DOA estimates of these active
classes were retrieved from DOA regression outputs.
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Table 3: SELD development results using validation set. ER, F, DE,
FR, and SELD are SED error rate, SED F1 score, DOA error, DOA
frame recall, and SELD metric respectively.

Methods Metrics ER F DE FR SELD
Baseline 2019 0.530 64.3 19.5◦ 68.4 0.327

SED-base 2019 0.239 85.0 NA NA NA
SED-EN 2019 0.180 88.9 NA NA NA
SS-hist 2019 NA NA 6.6◦ 74.7 NA

SMN-2D 2019 0.222 85.6 14.0◦ 78.4 0.165
SMN-base 2019 0.220 85.9 11.5◦ 78.3 0.161
SMN-EN1 2019 0.196 88.3 10.6◦ 77.7 0.149
SMN-EN2 2019 0.191 88.6 9.3◦ 78.2 0.144

Baseline 2020 0.720 39.1 24.0◦ 64.3 0.455
SMN-2D 2020 0.399 66.2 16.6◦ 85.6 0.243

SMN-base 2020 0.341 72.3 13.1◦ 85.9 0.208
SMN-EN1 2020 0.305 76.2 11.7◦ 88.4 0.181
SMN-EN2 2020 0.2900.2900.290 77.477.477.4 10.2◦10.2◦10.2◦ 88.788.788.7 0.1710.1710.171

3.3. SELD baselines and SMNs

We averaged the outputs of 4 SED models to form a SED ensem-
ble, which was used to train 5 SMN models using the same SMN
base network with different input lengths of 4, 6, 8, 10, and 15 sec-
onds. We denoted the SMN model that trained with the output of
the SED ensemble and input length of 6 seconds as SMN-EN1. We
averaged the outputs of the above 5 SMN models to form a SMN
ensemble that was denoted as SMN-EN2. SMN-EN1 and SMN-
EN2 are compared with the following methods:

• Baseline: a CRNN-based network called SELDnet that jointly
train SED and DOAE [6],

• SED-base: the base model for SED as shown in Section 2.1,

• SED-EN: an ensemble of 4 different SED models which are vari-
ants of the SED-base model,

• SS-hist: single-source histogram for DOAE estimation. The
DOA are selected as highest peaks of the joint 2D azimuth-
elevation histogram that above a certain threshold,

• SMN-2D: the SMN trained with a joint 2D histogram and out-
puts of the SED-base model [22]. The azimuth and elevation
resolutions are 10◦,

• SMN-base: the SMN that is trained with output of the SED-
base model and 1D azimuth and elevation histograms as shown
in Section 2.3

3.4. SELD experimental results

The SELD development results of the validation and test set us-
ing both the 2019 and 2020 evaluation metrics consistently show
that our SMN-base and SMN ensembles outperform the baseline
SELDnet by a large margin. The 2020 metrics penalizes the mis-
matching between sound classes and their DOA estimates, therefore
their scores are lower than those of the 2019 metrics. Using the of-
ficial 2020 evaluation metrics, the SED error rates and the DOA
errors of the SMN-EN2 reduce almost by half compared to those of
the baseline. On the test set, the F1 score of the SMN-EN2 is 71.2%
compared to 37.4% of the baseline, and the DOA frame recall of the
SMN-EN2 is 82.0% compared to 60.7% of the baseline.

Using the individual 2019 evaluation metrics, the SMN-2D and
SMN-base have similar SED error rate, SED F1 score, and DOA
frame rate. However, because SMN-2D uses azimuth and elevation

Table 4: SELD development results using test set. ER, F, DE, FR,
and SELD are SED error rate, SED F1 score, DOA error, DOA
frame recall, and SELD metric respectively.

Methods Metrics ER F DE FR SELD
Baseline 2019 0.54 60.9 20.4◦ 66.6 0.345

SED-base 2019 0.299 80.7 NA NA NA
SED-EN 2019 0.278 81.6 NA NA NA
SS-hist 2019 NA NA 8.5◦ 73.2 NA

SMN-2D 2019 0.283 80.5 14.5◦ 78.5 0.193
SMN-base 2019 0.280 80.8 11.7◦ 78.4 0.188
SMN-EN1 2019 0.272 81.4 11.3◦ 77.8 0.186
SMN-EN2 2019 0.267 81.6 10.4◦ 78.5 0.181

Baseline 2020 0.72 37.4 22.8◦ 60.7 0.466
SMN-2D 2020 0.450 61.6 18.7◦ 80.7 0.283

SMN-base 2020 0.401 66.6 15.0◦ 81.0 0.252
SMN-EN1 2020 0.381 69.4 13.5◦ 81.5 0.237
SMN-EN2 2020 0.3590.3590.359 71.271.271.2 12.1◦12.1◦12.1◦ 82.082.082.0 0.2230.2230.223

resolution of 10◦, its DOA error is larger than those of SMN-base.
This large DOA error leads to poorer performance of SMN-2D us-
ing the 2020 evaluation metrics. The dimension of a joint 2D his-
togram with azimuth and elevation resolution of 5◦ is 1368, which
would take much more memory and time to train. The dimensions
of the 1D azimuth and elevation histogram with 5◦ resolution are
72 and 19, which are much smaller than the dimension of the 2D
histogram. We tried large pooling size to train the joint 2D his-
tograms but their results were inferior than those of the SMN-base.
We concluded that in dynamic moving-source cases when a higher
angular resolution is required for a better performance, marginal 1D
histograms prove to be more effective than a joint 2D histogram for
learning to match SED and DOA sequences.

There are two cascading layers of ensemble: SED and SMN en-
semble. The SMN-EN1 model is a single SMN that uses outputs of
the SED ensemble as input features, while the SMN-EN2 model is
the ensemble of 5 SMN models that use outputs of the SED ensem-
ble as input features. The SED-EN model combines several SED
base models, thus it performs better than the SED-base model. Con-
sequently, the SMN-EN1 model outperform the SMN-base model.
Adding another layer of SMN ensembles, the SMN-EN2 model is
better than the SMN-EN1 model. Using the 2020 SELD evaluation
metrics, the jumps in performance between SMN-base, SMN-EN1,
and SMN-EN2 are wider than those using the 2019 SELD evalua-
tion metrics. This shows that ensembles are useful tools to increase
the correct association between sound classes and DOAs.

A close examination showed that the SED performance for the
male-shouting class on the test set is particularly poor. For DOA
estimation, we observe that elevation errors are larger than azimuth
errors using both SS-HIST and SMN approaches. This high eleva-
tion error is the main contributor to the DOA error.

4. CONCLUSION

In conclusion, the SMN works well for both static and dynamic
sources case. For dynamic moving-source cases that require high
angular resolution, marginal 1D histograms of azimuth and eleva-
tion are more suitable for the SMN than joint azimuth-elevation 2D
histogram for SELD. In addition, thanks to the flexibility in the net-
work design of the SMN, we can combine several SED and SMN
models in a cascading manner to further improve the final results.
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