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ABSTRACT 

For the DCASE 2020 Challenge, the focus of Task 1B is to 
develop low-complexity models for classification of 3 different 
types of acoustic scenes, which have potential applications in 
resource-scarce edge devices deployed in a large-scale acoustic 
network. In this paper, we present the training methodology for 
our submissions for the challenge, with the best-performing 
system consisting of an ensemble of VGGNet- and Inception-
Net-based lightweight classification models. The subsystems in 
the ensemble classifier were pruned by setting low-magnitude 
weights periodically to zero with a polynomial decay schedule to 
achieve an 80% reduction in individual subsystem size. The 
resultant ensemble classifier outperformed the baseline model on 
the validation set over 10 runs and had 119758 non-zero param-
eters taking up 468KB of memory. This shows the efficacy of 
the pruning technique used. We also performed experiments to 
compare the performance of various data augmentation schemes, 
input feature representations, and model architectures in our 
training methodology. No external data was used, and source 
code for the submission can be found at 
https://github.com/kenowr/DCASE-2020-Task-1B. 

Index Terms — Acoustic scene classification, weight 
pruning, ensemble classifier, VGGNet, InceptionNet 

1. INTRODUCTION 

Acoustic scene classification has been one of the mainstays of the 
DCASE Challenge. It aims to identify the environment in which 
an acoustic recording was made given the raw audio data itself. 
Prior to the DCASE 2020 Challenge, the focus of this task has 
been on the development of models with high classification 
accuracy. However, there is a well-known tradeoff between 
classification accuracy and model complexity, in that increasing-
ly complex models are required to obtain higher classification 
accuracies. Hence, the focus of Task 1B has shifted to reflect this, 
by requiring models to achieve as high a classification accuracy 
as possible within a model size of 500 kilobytes (KB). 

The main approaches to acoustic scene classification in the 
literature can be broken down into three main types: (i) data-
driven approaches looking to modify or augment the given da-
taset, (ii) representation-driven approaches looking to transform 
the given raw audio data to a different, possibly more salient 
form, and (iii) model-driven approaches looking to find modules 

and architectures that best replicate the desired output for a given 
input. A brief overview of these techniques is as follows. 

For data-driven approaches, other than the usage of external 
data, mixup augmentation [1]–[3] has been popular as a compu-
tationally cheap way to augment a dataset. In a similar fashion, 
Takahashi et al. proposed a method called Equalized Mixture 
Data Augmentation which creates new training samples from 
linear combinations of parametrically equalized versions of the 
original samples [4]. Furthermore, Chen et al. used a convolu-
tional variational autoencoder (CVAE)/generative adversarial 
network (GAN) system in the DCASE 2019 Challenge, which 
makes use of a separate neural network that generates new train-
ing samples, but is more computationally heavy [5]. 

For representation-driven approaches, log-mel spectrograms 
and mel-frequency cepstral coefficients of the raw audio data 
have commonly been used as input features to acoustic scene 
classification models. Alternatives to these features include mel-
frequency discrete wavelet coefficients and constant-Q cepstral 
coefficients [6], a combination of chroma, spectral contrast, and 
tonnetz features [7], and separation into harmonic and percussive 
components [2]. In addition, several teams have made use of the 
binaural nature of the recordings to devise useful representations, 
such as through primary ambient extraction to generate 4-channel 
spectrograms [3], as well as generalized cross-correlation-phase-
transform (GCC-PHAT) and interaural time difference (ITD) 
features [8]. 

For model-driven approaches, 2-dimensional (2D) convolu-
tional neural network (CNN) classifiers have often been utilized 
in conjunction with spectrogram representations as input, given 
that spectrograms can be identified as images and that 2D CNNs 
have enjoyed much success in image processing tasks. Models 
exploiting the time-domain nature of the raw signals have also 
been used, such as 1D CNN-based classifiers [9], [10] and 
AclNet [11]. Moreover, some authors have also modified exist-
ing network architectures to better fit the acoustic domain. For 
example, McDonnell et al. used residual networks with parallel 
but separate pathways for high and low frequency components 
[12], Su et al. modified an Xception network to allow predictions 
with multi-scale features from outputs at different depths [7], and 
Koutini et al. modified ResNet and DenseNet to incorporate 
receptive-field regularization and frequency-awareness [13]. 
Other approaches include the application of Dempster-Shafer 
evidence theory to aggregate subsystem outputs into an ensemble 
classifier [14], as well as the usage of a domain adaptation net-
work to cope with potential device mismatch problems [13]. 
Lastly, knowledge distillation also reduces model complexity, 
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because a larger teacher model is used to train a smaller student 
model to mimic the teacher’s outputs [15].  

For our submission, we focused on the use of pruning low-
magnitude weights to reduce model complexity. Initially pro-
posed by Lecun et al. [16], pruning can potentially ameliorate 
overfitting problems with complex models while reducing the 
parameter count.  Hence, we used relatively straightforward 
architectures and data preprocessing methods to observe their 
effects on classification accuracy. 

2. DATA PREPROCESSING 

For our submission, we used the TAU Urban Acoustic Scenes 
2020 3Class dataset [17], [18], which consists of 10-second long 
binaural recordings captured at a 48 kHz sampling frequency 
[19]. There is a 70-30 split between the training set and valida-
tion set, which we respectively used to train and evaluate our 
models. All recordings are classified into 10 fine-grained clas-
ses, which are in turn classified into the 3 coarse-grained classes 
“indoor”, “outdoor”, and “transportation” for Task 1B. 

2.1. Feature Extraction 

We used log-mel spectrograms as the features to train all the 
models in our submission. The binaural recordings were first 
converted to mono recordings by taking the point-wise mean of 
sample values across channels. The log-mel spectrograms were 
then generated from the short-time Fourier transform (STFT) of 
the mono recordings using a Hann window of length 2048 with 
50% overlap between windows and 48 mel bands with a mini-
mum and maximum frequency of 0Hz and 24kHz, respectively.  

The choice of the number of mel bands and STFT window 
length (with constant 50% overlap) was made as a result of a 
preliminary grid search over the sets {32, 48, 64} and {1024, 
2048, 4096}, respectively. The search was conducted with the 
same model architecture (Model 1, as described in Section 3.1) 
for 200 epochs and without pruning. We chose the parameters 
with the best performance, which were indeed 48 mel bands and 
an STFT window length of 2048, as shown in Table 1. 

2.2. Data Augmentation 

We used a modified version of random block mixing [20] to 
augment the dataset. Each augmented track consists of ten 1-
second long segments from different recordings in the original 
dataset that have been concatenated. The 1-second long seg-
ments for each augmented track were chosen at random points of 
random recordings belonging to the same coarse-grained class, 
but from as many different cities as possible to maximize varia-
tion in the augmented data. Hence, each augmented track has the 
same label as the original segments that comprise it. An example 
of an augmented track can be seen in Figure 1. 

Before deciding on our data augmentation scheme, we also 
explored the effect of concatenating different numbers of seg-
ments (2, 4, 5, 10 segments of length 5, 2.5, 2, 1 seconds, re-
spectively), as well as whether the random segments were from 
the same coarse-grained or fine-grained class. We used the same 
model architecture (Model 1) and pruning schedule (described 
in Section 4) for this experiment, and Table 2 shows the results.   

Table 1: Unpruned Model 1 macro-averaged accuracy (mean ± 
standard deviation (SD)) over 10 runs with different log-mel 
spectrogram parameters 

# mel 
bands 

STFT window length 
1024 2048 4096 

32 0.8789 ± 0.0070 0.8738 ± 0.0078 0.8693 ± 0.0085 
48 0.8776 ± 0.0057 0.8858 ± 0.0052 0.8797 ± 0.0097 
64 0.8846 ± 0.0056 0.8848 ± 0.0052 0.8785 ± 0.0056 

 
(a) 

  
(b) 

 
Figure 1: Example of augmented track with label “transporta-
tion” as a (a) time-domain signal and (b) log-mel spectrogram. 

Table 2: Pruned Model 1 macro-averaged accuracy (mean ± SD) 
over 10 runs with different data augmentation schemes. 

# seg- 
ments 

Type of class labels used for mixing 
Fine-grained Coarse-grained 

2 0.8852 ± 0.0068 0.8887 ± 0.0060 
4 0.8839 ± 0.0086 0.8895 ± 0.0048 
5 0.8870 ± 0.0067 0.8821 ± 0.0057 

10 0.8852 ± 0.0079 0.8840 ± 0.0069 
 

There is almost no difference in mean macro-averaged ac-
curacy among the different schemes. This was confirmed by 
Friedman test with two factors: the number of segments and type 
of class labels used for mixing. The p-values for both factors 
were respectively 0.3023 and 0.5453, indicating that both factors 
had no significant effect (at a 0.05 significance level) on model 
performance. Hence, we chose to use ten 1-second segments with 
identical coarse-grained labels to maximize the variance of the 
augmented data samples over time. 

3. NETWORK ARCHITECTURE 

The networks that we used for our submission to Task 1B were 
variants of VGGNet [21] and InceptionNet [22] using fewer 
filters per layer and fewer layers. Initially designed for image 
recognition tasks, they have also been adapted successfully for 
tasks in the audio domain in previous studies [5], [23]–[25]. 

3.1. Subsystem Architecture 

VGGNet and InceptionNet respectively use stacks of smaller 
VGG(k) and Inception(k) modules, where k denotes the number 
of filters used for the convolutional layers in the modules. The 
structure of these modules is shown in Figure 2. We denote the 
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variants of VGGNet and InceptionNet used in our submission as 
V(a,b,c,d) and I(p,q,r), where (a,b,c,d) and (p,q,r) denote the 
sequence of numbers of VGG(k) and Inception(k) modules re-
spectively present in their architectures. The networks had in-
creasing numbers of filters in later layers, and are shown in full 
in Figure 3 and Figure 4. As advised in [22], to improve predic-
tion accuracy, we did not perform batch normalization for the 
Inception(k) modules for the I(p,q,r) architecture, and used In-
ception(k) modules only at the latter layers of the network with 
regular convolutional layers at the beginning. All parameters in 
the subsystems used were in 32-bit floating point representation. 
We used (a,b,c,d) = (2,2,3,3) and (p,q,r) = (2,1,2) for the net-
works in our submission to keep the networks relatively shallow. 
We also explored the effects of altering the network depth after 
the challenge deadline, and present these results in Section 5. 

3.2. Ensemble Classifier 

In addition to the two basic networks described in Section 3.1, 
we also combined five VGGNet-based models (Figure 3) and one 
InceptionNet-based model (Figure 4), trained independently with 
different randomly-initialized weights on the same dataset, as 
subsystems for an ensemble classifier. The mean of the class 
probabilities from each subsystem was taken to be the output of 
the final ensemble classifier. 

3.3. Submitted Models 

The four models that we submitted are made up of different 
combinations of the network architectures described in Section 
3.1, and are specifically described as follows. 

 Model 1: V(0,0,1,0) trained on non-augmented data. 
 Model 2: I(2,1,2) trained on non-augmented data. 
 Model 3: Ensemble classifier (five V(0,0,1,0) models 

+ one I(2,1,2) model) trained on non-augmented data. 
 Model 4: Ensemble classifier (five V(0,0,1,0) models 

+ one I(2,1,2) model) trained on augmented data. 

4. TRAINING METHODOLOGY 

Each model (or subsystem) in our submission was trained for 400 
epochs with a batch size of 128 samples. An L2 kernel regulariz-
er (regularization factor 0.001) was applied to all 2D convolu-
tional and dense layers. We used the Adam optimizer with a 
learning rate of 0.0001 to train every model (or subsystem) by 
minimizing the regularized categorical cross-entropy loss be-
tween the predictions and ground-truth labels. 

In addition, we adopted a pruning schedule during the 
training phase similar to that proposed by Zhu and Gupta in [26]. 
The pruning schedule has a polynomial decay as shown in Equa-
tion (1). We denote si as the initial sparsity and sf as the final 
sparsity (proportion of model parameters set permanently to zero 
at the start and end of the pruning schedule, respectively). Let n 
be the number of times pruning occurs, t0 be the first epoch when 
pruning occurs, and Δt be the number of epochs between each 
time pruning occurs, then we have  

  
(1)

 

(a)

 

 (b)

 
Figure 2: Architecture of (a) VGG(k) module and (b) Incep-
tion(k) module. 

 

 
Figure 3: VGGNet-based network V(a,b,c,d) architecture. 
The parameter values a, b, c, and d are shown in red text. 

 

 
Figure 4: InceptionNet-based network I(p,q,r) architecture.  
The parameter values p, q, and r are shown in red text. 

 
for all k in {t, t+1, …, t+Δt} and t in {t0, t0+Δt, …, t0+nΔt}. In 
our submissions, we used si = 0.1, sf = 0.8, n = 20, t0 = 100, and 
Δt = 10. 

5. RESULTS AND DISCUSSION 

We used the trained and pruned models to make predictions on 
the validation set, and compared them with the provided ground-
truth labels to determine their micro-averaged and macro- aver-
aged accuracies. For reference, we also trained unpruned
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Table 3: Summary of submitted model performance (mean ± SD) over 10 runs on validation set. The baseline model performance (B), as 
reported by the challenge organizers, is also presented here for comparison. All models were trained over 400 epochs, but pruned models 
followed the schedule in Section 4. Model sizes were calculated based on number of non-zero parameters.
Mo- 
del 

Unpruned Pruned 
Accuracy 
(micro) 

Accuracy 
(macro) 

# non-zero 
parameters 

Model 
size (KB) 

Accuracy 
(micro) 

Accuracy 
(macro) 

# non-zero 
parameters 

Model 
size (KB) 

B --- 0.873 ± 0.007 115219 450.1 --- --- --- --- 
1 0.8896 ± 0.0052 0.8890 ± 0.0058 80839 315.8 0.8798 ± 0.0088 0.8797 ± 0.0080 17115 66.9 
2 0.8734 ± 0.0044 0.8728 ± 0.0040 167571 654.6 0.8803 ± 0.0070 0.8797 ± 0.0069 34181 133.5 
3 0.9112 ± 0.0040 0.9108 ± 0.0041 571768 2233.6 0.9060 ± 0.0020 0.9066 ± 0.0020 119758 467.8 
4 0.9132 ± 0.0024 0.9130 ± 0.0024 571768 2233.6 0.9086 ± 0.0019 0.9090 ± 0.0020 119758 467.8 

 
Table 4: Summary of performance unpruned model architectures of different depths (mean ± SD) over 10 runs on validation set. 

Metrics VGGNet-based models V(a,b,c,d) InceptionNet-based models I(p,q,r) 
V(0,0,1,1) V(2,2,3,3) V(4,4,5,5) I(1,0,1) I(2,1,2) I(3,2,3) 

Accuracy (micro) 0.8616 ± 0.0014 0.8920 ± 0.0045 0.8797 ± 0.0044 0.8891 ± 0.0018 0.8758 ± 0.0048 0.8801 ± 0.0043 
Accuracy (macro) 0.8624 ± 0.0019 0.8921 ± 0.0040 0.8794 ± 0.0036 0.8890 ± 0.0016 0.8743 ± 0.0036 0.8789 ± 0.0043 
# NZ parameters 54415 80839 106327 68099 167571 267042 
Model size (KB) 212.6 315.8 415.3 266.0 654.6 1043.1 
 
versions of the four models described in Section 3.3 for 400 
epochs, and present a summary of the performance of both the 
unpruned (not submitted) and pruned (submitted) models in 
Table 3. All models in our submission exceeded the mean 
baseline model macro-averaged accuracy of 0.873. They were 
also within the size limit of 500KB. These results show that the 
combination of pruning, shallower models, and modified block 
mixing could improve classification accuracy for acoustic scene 
classification tasks.  

With the pruning schedule described in Section 4, we can 
also see that all models in our submission had a five-fold reduc-
tion in number of non-zero (NZ) parameters and model size as 
compared to the unpruned models. In addition, the pruned 
ensemble classifiers (Models 3 and 4) performed markedly 
better than the pruned single models (Models 1 and 2), with an 
approximate 2% increase in both mean micro-averaged and 
macro-averaged accuracy over the single models. 

Pruning also led to a drop in performance of all models 
except Model 2 by about 0.5-1% in both micro- and macro-
averaged accuracy. In contrast, both micro- and macro-
averaged accuracies of Model 2 increased with pruning. To 
quantify the significance of these differences, we performed 
two-sided Wilcoxon rank-sum tests between the results of the 
pruned and unpruned versions of each model. The p-values 
were 0.0210, 0.0140, 0.0090, and 0.0001 for the micro-
averaged accuracies of Models 1, 2, 3, and 4, respectively, and 
0.0155, 0.0173, 0.0538, and 0.0025 for the macro-averaged 
accuracies of Models 1, 2, 3, and 4, respectively. 

The significance (at a 0.05 significance level) of the dif-
ferences in performances of Models 1, 3, and 4 are as expected 
due to the decrease in number of parameters available to fit the 
data after pruning. However, the significance of the difference 
in performance of Model 2 hints at possible overfitting in the 
unpruned version, and that pruning could have precluded this 
issue precisely through parameter reduction. Since Models 1 
and 2 are respectively VGGNet- and InceptionNet-based, the 
results could also indicate that different network architectures 
are amenable to pruning at different extents, but further investi-
gation would be necessary to validate this hypothesis. 

Lastly, Table 4 summaries the single unpruned model per-
formances at different depths due to the choice of (a,b,c,d) and 
(p,q,r). The VGGNet-based and InceptionNet-based models 
with the best classification accuracy (both macro-averaged and 
micro-averaged) were V(2,2,3,3) and I(1,0,1), respectively. 
These models also performed significantly better than the other 
VGGNet-based and InceptionNet-based models in Table 4, 
with two-sided Wilcoxon rank-sum tests on the 10 runs giving 
p-values of <0.001. Therefore, this validates our choice of 
(a,b,c,d) = (2,2,3,3) for the VGGNet-based models and subsys-
tems in our submission. However, it also implies that our 
choice of (p,q,r) for the InceptionNet-based models and subsys-
tems in our submission was likely to be suboptimal, because 
choosing I(1,0,1) would have increased the classification accu-
racy and reduced the model complexity simultaneously. 

6. CONCLUSION 

In conclusion, our submission to DCASE 2020 Task 1B con-
sists of VGGNet- and InceptionNet-based networks either used 
singularly or combined as an ensemble classifier. Our best 
performing model used a modified block mixing technique for 
data augmentation and was pruned to achieve a five-fold re-
duction in non-zero parameter count. It attained a mean macro-
averaged accuracy of 0.9090 (± 0.0020) over 10 runs on the 
validation set, thus outperforming the baseline. The final per-
formance of the best submitted model on the challenge evalua-
tion set was a mean macro-averaged accuracy of 0.898 with a 
log-loss of 0.257, which was also better than that of the base-
line with a mean macro-averaged accuracy of 0.895 and a log-
loss of 0.401. Future work on the topic of low-complexity 
models could involve developing metrics that encompass the 
accuracy-complexity dichotomy, possibly in order to find some 
Pareto-optimal region for accuracy against complexity. 
Knowledge of such a region would be extremely useful for 
real-life applications of acoustic scene classification, since 
users could derive optimal models balancing the desired accu-
racy against complexity for specific use cases. 
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