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ABSTRACT

The present article describes the architecture of a system submitted
to the DCASE 2020 Challenge - Task 3: Sound Event Localization
and Detection. The proposed method conforms a low complexity
solution for the task. It is based on four building blocks: a spatial
parametric analysis to find single-source spectrogram bins, a par-
ticle tracker to estimate trajectories and temporal activities, a spa-
tial filter, and a single-class classifier implemented with a gradient
boosting machine . Results from the development dataset show that
the proposed method outperforms a deep learning baseline in three
out of the four evaluation metrics considered in the challenge, and
obtains an overall score almost ten points above the baseline.

Index Terms— SELD, ambisonics, tracking, event classifica-
tion, gradient boosting

1. INTRODUCTION

Sound Event Localization and Detection (SELD) refers to the prob-
lem of identifying, for each individual event present in a sound field,
the spatial location Ω, temporal activity Υ, and sound class κ to
which it belongs.

The organization of a dedicated SELD task within the IEEE
AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE) 2019 can be considered as a mile-
stone for the development of the SELD research problem. Indeed, a
large number of novel methodologies were developed for the Chal-
lenge, most of them based on Convolutional Recurrent Neural Net-
works (CRNN). The performance of the baseline method, a CRNN
that performed jointly the localization and classification tasks [1],
was vastly exceeded by a variety of deep-learning based algorithms
[2, 3, 4]. Some of these improvements have been included in the
baseline system for the SELD Challenge of DCASE 2020.

Despite the predominant trend towards high-complexity deep-
learning architectures, some recent works have been able to match
or even improve CRNN-based methods with regard to localization,
by using parametric analysis of the ambisonic sound field [5, 6].
Apart from the benefit derived by their simplicity, these approaches
are able to resolve the case of overlapping events of the same class,
a situation difficult to disambiguate for CRNN-based methods [7].

The present work continues the exploration of possibilities of
parametric SELD mehthods, focusing on a low-complexity archi-
tecture that makes use of traditional, feature-based machine learn-
ing techniques. The method been developed in the context of the
SELD task withih DCASE 2020 Challenge, and therefore utilizes
the proposed dataset, baseline system and evaluation metrics.

Figure 1: Architecture of the proposed methodology.

2. SYSTEM DESCRIPTION

The proposed method, referred to as PAPAFIL, can be summed up
in four steps:

1. Estimate single-source time-frequency bins.

2. Use a particle tracking system to estimate event trajectories
and activation times from single-source bins.

3. Perform spatio-temporal filtering on the input signal.

4. Assign a class label to the estimated event.

A scheme of the method is shown in Fig. 1. The full implemen-
tation is available online with an open source license [8].

2.1. Single-source estimation

The first step is the transformation of the B-Format input signal
x(t) = [x0(t), x1(t), x2(t), x3(t)]

ᵀ using the Short-Time Fourier
Transform (STFT) into the time-frequency (TF) signal X(k, n),
with k and n denoting the frequency and time indices, respectively.
The number of channels of the input signal is M = 4.

In the resulting spectrogram, the frequencies above a given limit
fmax are discarded; this procedure speeds up the method while
maintaining the directional information, given that the microphone
geometry aliases spatial measurements above approx. 5 kHz [9].

Assuming that the sources are sparse in time-frequency, it could
be possible to identify TF bins which contain a significant energetic
contribution from only one source. These bins could be then used
to produce accurate Direction of Arrival (DOA) estimates. The ef-
fectiveness of this approach has already been demonstrated [10, 6].

Single-source TF bins are computed from the DirAC paramet-
ric analysis [11, 12] A variety of alternative subspace methods are
known [13, 14]; however, those methods require local estimation of
eigenvalues, which is a computationally expensive procedure.

A TF bin is counted as single-source if its diffuseness Ψ(k, n)
is lower than a threshold Ψmax. Diffuseness is defined as [12]:
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Ψ = 1− 2
‖〈�{X∗

0 [X1, X2, X3]}〉‖
〈|X0|2 + ‖[X1, X2, X3]‖2〉

, (1)

where the time and frequency indices have been dropped for clar-
ity, and 〈·〉 represents the temporal expectation operator, which is
usually implemented by averaging over NΨ neighbor frames.

Finally, the DOA Ω(k, n) of the TF bins passing the aforemen-
tioned single-source test is computed as the angle of the active in-
tensity vector [12]:

Ω = ∠(�{X∗
0 [X1, X2, X3]}), (2)

where ∠ is the spherical angle operator. To illustrate the process, an
example of the method output is plotted in Fig. 2 (top).

2.2. Particle tracking

Once a set of reliable TF DOA estimates is obtained, the next
step is the generalization of the individual measurements into tra-
jectories and temporal activations. In our case, we opted for the
Rao-Blackwellized Monte-Carlo Data Association (RBMCDA) al-
gorithm [15], which decomposes the multiple target tracking prob-
lem in two: it solves first the data association problem, and then
performs the single target tracking individually. This method has
been recently used in the context of sound event localization and
tracking with successful results [1, 16]; the code used for our im-
plementation has been adapted from the same authors [17].

The system takes as the input the set of TF DOA values passing
the single source test, and produces spatio-temporal event trajecto-
ries, considering an event as an entity with contiguous temporal ac-
tivation and continuous spatial position. More specifically, for each
time frame of the DOA masked spectrogram, the median1 of all nar-
rowband DOA estimates is computed. The resulting value is added
to the measurement space of the tracker if the number of single-
source frequency bins for that frame exceeds a minimum Kmin.

The performance of the RBMCDA algorithm is controlled by
several parameters. Some of the most relevant include the angular
velocity prior v, the standard deviation σν and the spectral density
sν of the measurement noise, the prior probabilities of birth pbirth
and noise percentage pν , and the number of Monte-Carlo particles
N . Position-related parameters are adjusted with respect to their
ranges, so that azimuth-related magnitudes double elevation values.

The procedure is followed by a numerical post-processing step,
which includes data interpolation, resampling (if needed), and re-
moval of elements shorter than Tmin. Finally, the system provides
a list of J events, each one having an instantaneous position Ωj(t)
and a temporal activation Υj . An example of the system inputs and
outputs is depicted in Fig. 2 (bottom).

2.3. Signal filter

The information provided by the particle tracking system is used
to spatially filter the input signal. This can provide an enhanced
monophonic estimate of an event s̃j(t) with reduced influence of
simultaneous events. The process is performed by steering a virtual
first-order cardioid in the direction of interest:

s̃j(t) =

M−1∑
m=0

xm(t)Ym(Ωj)αn (3)

1Circular median in the case of azimuth.

Figure 2: Estimation of localization and tracking. Top: azimuth
spectrogram after diffuseness mask; color indicates estimated posi-
tion (in degrees) of a TF bin passing the single-source test. Bottom:
input/output of the particle tracking; the crosses represent the mea-
surement space, and the continuous lines are the resulting events.

Figure 3: Gradient boosting machine learning process. Adding
weak estimators allows reducing overall error in the predictions.

where Y (Ωj) = [Y0(Ωj), . . . , Y3(Ωj)]
ᵀ are the real-valued spher-

ical harmonics up to first order evaluated in the direction Ωj [18],
and the column vector αn controls the beam pattern directivity.

2.4. Event classification

As a final step, a class label is assigned to each estimated event
s̃j(t) using a single-class classifier. Since the objective is to keep
complexity low and make results interpretable, a machine learning
algorithm is used instead of deep learning frameworks. The main
advantages of this choice are: (i) low number of parameters; (ii)
low train and predict computational time, easing reproducibility;
and (iii) relative importance of the features in the output can be
interpreted, which is not possible with deep learning approaches.

Gradient Boosting Machine (GBM, Fig. 3) has been selected as
the classification algorithm since it is a powerful yet simple tech-
nique for predictive modelling. In essence, the algorithm is aimed
to minimize the loss of the objective function by adding many weak
learners. These learners are typically simple decision trees and their
parameters are tuned using gradient descent techniques. GBM im-
plementation makes use of the scikit-learn library [19].

Sound features are obtained using extractors from Essentia, an
open-source library for audio analysis [20]. Given the heteroge-
neous nature of the sound classes, a mixture of spectral, temporal
and harmonic features are used, as shown in Table 1. Features are
computed either frame-based or on the whole event; in the former
case, the classifier is fed with their temporal first-order statistics.
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Table 1: Acoustic features used for classification, grouped by type.

Type Features Number

Low-level Melbands 24
MFCC 13

Spectral Features 26

SFX Duration 2
Harmonic 4

Sound envelope 11
Pitch envelope 4

3. EXPERIMENTS

3.1. Dataset and baseline system

The dataset used is the FOA subset of the development set of the
TAU-NIGENS Spatial Sound Events 2020 [7], which features 600
different B-Format clips of 60 seconds long each. Each clip contains
multiple sound events, which belong to one of the fourteen sound
classes from the NIGENS database [21]. Events are also located at a
potentially time-varying positions, and the maximum instantaneous
overlapping of sources allowed is limited to two. Fifteen different
Room Impulse Responses (RIR) are used for scene reverberation,
covering a vast range of acoustic conditions. Furthermore, the audio
clips contain a moderate amount of recorded background sounds.

The baseline method is based on the recently proposed SELD-
net architecture [1], which features a 3-layer Convolutional Recur-
rent Neural Network (CRNN) that solves both localization and clas-
sification problems jointly. Additionally, the baseline implementa-
tion has been improved with several changes inspired by one of the
best performing methods in DCASE 2019 Task 3 Challenge [3].

3.2. Experimental setup

In order to explore the performance of the system, two different ap-
proaches have been undertaken regarding the creation of the train-
ing dataset for the monophonic single-class classifier. The first
approach, referred to as PAPAFIL1, collects all event localization,
temporal activation and class information by parsing the annotation
files. Conversely, the second approach, called PAPAFIL2, uses the
proposed parametric particle filter to estimate localizations and ac-
tivations, and the class label is assigned to each event by a custom
association algorithm based on spatio-temporal distance. In both
cases, the input signal is filtered with the obtained information in
order to conform the monophonic event estimates.

Therefore, the difference between training datasets is notice-
able: while the training events in PAPAFIL1 are more accurately
determined than in PAPAFIL2, the differences with respect to the
prediction scenario are much bigger in the former case. The number
of individual events for each of the approaches is plotted in Fig. 4.
Approximately half of the classes have similar number of instances
in both datasets. However, the other half presents noticeable dif-
ferences, which might be explained by the different criteria applied
for the consideration of event temporal activations: the groundtruth
seems to follow a frame-based activity detection approach, while
the output of the proposed method tends to consider events as time-
continuous manifestations, influenced by the particle filter.

This situation leads to two different oracle systems (referred
to by appending -O in the method name), which represent the best
performance theoretically achievable for the corresponding method.

Figure 4: Number of occurrences of each event class in the training
set, for both proposed methods.

The accurate information of the PAPAFIL1 training set suggests
a need for data augmentation; in contrast, the training material used
in PAPAFIL2 is already provided by a certain extent of variability.
This situation motivates the implementation of data augmentation
methods in the PAPAFIL1 training set. Specifically, several stan-
dard data augmentation techniques are implemented: pitch shifting,
time shifting, time stretching and white noise addition. Further-
more, given the observed high influence of reverberation in the sys-
tem performance, a reverberant data augmentation technique based
on synthetic RIRs has been considered. Ten different single-channel
RIRs, with reverberation times between 0.3 and 1.1 seconds, have
been synthetically created using the masp library [22]. During train-
ing, each event estimate is convolved with one of the RIRs, ran-
domly chosen. RIR augmentation has recently been shown very ef-
fective for blind reverberation time estimation [23] but, to the best
of the authors’ knowlegdge, this is the first application in SELD.

Table 2 shows a comprehensive list of the parameters used
throughout the different steps of the proposed method. All values
are equal for both presented approaches, except for the number of
Monte-Carlo particles N . The values for Single-Source Estima-
tion and Particle Filtering parameters have been iteratively refined
by manual tuning and inspection, departing from standard values.
The beamforming weights αm correspond to the maximum direc-
tivity beamformer, which minimizes the energy contributions from
directions other than the lookup direction [24]. In the spatial au-
dio field, such property is also known as the max-rE decoder [18].
Regarding event classification, a cross-validation scheme has been
implemented for tuning GBM hyperparameters.

3.3. Evaluation metrics

The system is evaluated according to the joint metrics proposed in
the Challenge [25]. The metrics evaluate jointly the localization and
the classification, and are divided into two types: location-aware
classification, and classification-aware localization. There are two
classification metrics: Error Rate (ER20) and F-Score (F20). As
the name suggests, the metrics are conditioned to a minimum local-
ization performance, which is set to 20◦ in this case. Localization
metrics are also two-fold: Localization Error (LECD) and Localiza-
tion Recall (LRCD); as their name suggests, the metrics are class-
dependent, and thus are conditioned to a correct classification. Fi-
nally, the SELD score is an average of the four other metrics, used
to conveniently sum up the results.
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Table 2: (Hyper-)parameter values.

Step Parameter Value Unit

Single-Source sample rate 24 kHz
window size 2400 samples

window overlap 50 %
fmax 6 kHz
NΨ 2 frames

Ψmax 0.1

Particle v 2 ◦/frame
Filtering σν 5

sν 20
pbirth 0.25
pν 0.25
N 100 / 30

Kmin 10 bins/frame
Tmin 10 frames

Signal α0 0.775
Filter α1 3 * 0.4

Event number of estimators 1300 trees
Classification loss mlogloss

learning rate 0.05
max depth 4

min samples leaf 10 samples

4. RESULTS

Table 3 summarizes the results of the experiments using the rec-
ommended data split: training with folds 3 to 6, validation with
fold 2 and testing with fold 1. Results are reported for three dif-
ferent systems: the baseline and the two proposed methods PA-
PAFIL1 and PAPAFIL2. The results of their respective oracle re-
sults, PAPAFIL1-O and PAPAFIL2-O, are also provided.

Both proposed approaches outperform the baseline system in
three out of the four evaluation metrics (ER20, F20 and LECD). Al-
though the results obtained by both of them are similar, PAPAFIL2
obtains better classification scores (ER20 and F20), and PAPAFIL1
performs subtly better regarding localization error (LECD). How-
ever, the localization recall results (LRCD) are slightly worst than
the baseline in both cases. This fact does not prevent the proposed
methods to have a SELD score better than the baseline: 0.41 (PA-
PAFIL1) and 0.38 (PAPAFIL2), against 0.47 (BASELINE).

The results obtained by the oracle methods are within the ex-
pected ranges. PAPAFIL1-O performs almost perfectly regarding
LECD , but the classification errors influence the LRCD result. In
turn, PAPAFIL2-O performs better than PAPAFIL1-O regarding all
metrics, excepting LECD; this improvement is specially noticeable
in LRCD , with a performance difference of about 15%. The good
results obtained by PAPAFIL2-O validate the proposed particle fil-
tering approach, an leave space for improvements that might be
given by a better understanding and fine tuning of the model.

The performance of the proposed methods deteriorates notice-
ably with overlapping sounds. A closer inspection reveals that, in
many occasions, the TF bins passing the single-source test mostly
belong to one out of two simultaneous sources. It is a known issue
that performance of DirAC diffuseness is reduced when two sources
are present [13]; similar problems have been reported in [16], where
an instantaneous source number estimator is used in combination
with the particle filter. As in that case, the results suggest the need
for more sophisticated source detection and counting methods.

Table 3: Evaluation results on the development set.

Method ER20 F20 LECD LRCD SELD

BASELINE 0.72 37.4 % 22.8◦ 60.7 % 0.47
PAPAFIL1 0.60 49.8 % 13.4◦ 54.4 % 0.41
PAPAFIL2 0.57 54.0 % 13.8◦ 59.7 % 0.38

PAPAFIL1-O 0.37 67.0 % 2.0◦ 68.6 % 0.26
PAPAFIL2-O 0.32 79.6 % 8.5◦ 82.4% 0.19

Figure 5: Most representative features in event classifier.

To conclude the analysis, Fig. 5 shows the relative importance
of the fifteen most relevant acoustic features for the PAPAFIL2 clas-
sifier model. Event duration is clearly the feature with the highest
importance, and effective duration (duration of the signal discard-
ing silence) also appears in the eighth position. This fact can help
to explain the better performance of PAPAFIL2 over PAPAFIL1: the
temporal activities of the events in training and prediction are much
more similar to each other in the former method, as a consequence
of the training set generation approach. Furthermore, it is interest-
ing to notice the high relevance of low-level features, and specifi-
cally several MFCC combinations (eight of the fifteen reported fea-
tures) and various extractors related to the spectral structure. The
absence of pitch, harmonic and envelope features in the list repre-
sents a significant finding as well.

5. CONCLUSION

We present a novel low-complexity method for Sound Event Lo-
calization and Detection of First Order Ambisonic signals, based
on four steps: estimation of single-source spectrogram regions by
parametric analysis; computation of event trajectories and activa-
tions by means of a particle tracker; spatio-temporal filtering of the
input signal; and single-class monophonic event classification by
Gradient Boosting. Results show that the proposed method outper-
forms the baseline method, a state-of-the-art Convolutional Recur-
rent Neural Network. Specifically, our method is able to improve
the baseline SELD score by almost ten points, while increasing the
scores in three out of the four metrics under consideration.
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