
Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

EVALUATION METRIC OF SOUND EVENT DETECTION
CONSIDERING SEVERE MISDETECTIONS BY SCENES

Noriyuki Tonami1, Keisuke Imoto2, Takahiro Fukumori1, Yoichi Yamashita1,

1 Ritsumeikan University, Japan, 2 Doshisha University, Japan.

ABSTRACT
In this paper, we propose a new evaluation metric for sound event
detection (SED) and discuss a problem frequently encountered in
conventional metrics. In conventional evaluation metrics, misde-
tected sound events are treated equally, e.g., the misdetected sound
event “birdsong” in the acoustic scenes “airplane” and “park” are
treated as the same type of misdetection. However, the misdetected
event “birdsong” in “airplane” is a severe mistake compared with
its misdetection in “park.” The event “birdsong” rarely occurs in
the “airplane.” SED systems that are evaluated using conventional
metrics may cause severe/catastrophic problems and lead to confu-
sion in practice owing to lack of consideration of the relationship
between sound events and scenes. Our evaluation metric for SED
considers severe misdetections on the basis of the relationship be-
tween sound events and scenes. We demonstrate the utility of our
proposed method by comparing it with the conventional evaluation
metrics on two datasets with events and scenes. Experimental re-
sults show that the proposed metric can accurately evaluate whether
SED systems appropriately consider the relationship between sound
events and scenes.

Index Terms— sound event detection, evaluation metrics,
acoustic scene

1. INTRODUCTION
There has been increased interest in the automatic analysis of vari-
ous environmental sounds within human everyday life [1]. The au-
tomatic analysis of environmental sounds will lead to many appli-
cations, such as anomalous sound detection systems [2], automatic
life-logging systems [3], monitoring systems [4], bird-call identifi-
cation [5], and hearing-impaired support systems [6].

Sound event detection (SED) is the task of identifying sound
event labels and their boundaries from a recording. SED has been
studied by machine learning methods [7–10] and several types of
evaluation framework have been proposed [11–14]. Bilen et al. [13]
have proposed a new event-based evaluation metric, which is more
robust to the subjectivity of annotation. Baumann et al. [14] have
proposed a new evaluation framework for rare sound event detec-
tion, in which a more realistic construction of data is considered.

In our everyday life, sound events may occur in various sound-
scapes, so-called “acoustic scenes.” For example, the sound event
“people walking” can occur in many scenes such as “office,”
“home,” and “supermarket”. On the other hand, the sound event
“car” tends to occur only outdoors such as in the scene “street”.
The sound events and scenes are thus strongly related to each other.
On the basis of this concept, SED utilizing the results of acous-
tic scene classification (ASC) [15–17], ASC using information on
sound events [18, 19], joint models of SED and ASC [20–23], and
a public dataset [20] have been proposed. In those works, conven-
tional metrics were used, e.g. the F-score, which disregard the rela-
tionship between sound events and scenes. The misdetected event

“birdsong” in the scenes “park” and that in “airplane” are treated
as the same type of misdetection (e.g., false positive) when using
conventional metrics such as the F-score. However, in our every-
day life, the meaning of the sound event depends on the acoustic
scene. For example, the sound event “birdsong” in the acoustic
scene “park” is a normal sound because “birdsong” often occurs
in “park”. In contrast, the event “birdsong” rarely occurs in the
scene “airplane.” Assuming that a SED system detects “birdsong”
in the “airplane,” this can indicate a severe error compared with its
detection in the scene “park.” Such a system may encounter a catas-
trophic problem and lead to confusion people in practice. To avoid
this problem, we must accurately evaluate the performance of SED
systems.

In this paper, we propose a new evaluation metric for SED uti-
lizing the relationship between sound events and scenes. Moreover,
we discuss the problem plaguing the conventional metrics (F-score),
in which the relationship between sound events and scenes is not
considered. The new evaluation metric employs the severity of
misdetection using the incidence relationship between sound events
and scenes (which event occurs in which scene). The new evalu-
ation metric is expected to enable precise evaluation of the perfor-
mance of SED systems and avoid severe or catastrophic problems
in practice. In addition, the proposed metric is helpful when choos-
ing/building more realistic systems that do not cause severe prob-
lems or confusion.

2. CONVENTIONAL EVALUATION METRIC
FOR SOUND EVENT DETECTION

2.1. Segment-based F-score for SED
In SED tasks, segment and event-based measurements [12] have
been used to evaluate the performance of SED systems. In this
paper, we focus only on the segment-based F-score although the
concept of our proposed method can be utilized in both segment-
and event-based measurements. To calculate the segment-based
F-score, the output of the network is first binarized, such as by the
following thresholding:

ŷm,t =

{
1 ym,t > τ

0 otherwise ,
(1)

where ym,t and τ denote the output of the networks for event m in
the time frame t and a threshold value, respectively.

We then calculate true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) between ŷm,t and the ground
truth. To calculate the segment-based F-score, the TPs, FPs, and
FNs are aggregated as follows:

Fscore =
2TP

2TP + FP + FN
. (2)
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Figure 1: Incidence relationships between sound events and scenes (which event occurs in which scene)
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Figure 2: Venn diagram representations: conventional (left) and
proposed (right) metrics

Table 1: SED results of two models for event “washing dishes”
using toy dataset

Metric Model 1 Model 2
bank home bank home

# TPs 0 200 0 200
# FPs 200 0 0 200
# FNs 0 50 0 50
# TNs 250 250 250 250
F-score 61.54% 61.54%
IoU 44.44% 44.44%
HM 47.06% 61.54%

2.2. Problem of evaluation metric (F-score) for SED
None of the conventional evaluation metrics, such as the F-score,
for SED take account of the relationship between sound events and
scenes. However, the sound events and acoustic scenes are closely
related to each other. For example, in the acoustic scene “home,”
the sound event “washing dihses” often occurs. On the other hand,
in the scene “bank,” the event “washing dishes” rarely occurs. If
the event “washing dishes” occurs in the scene “bank,” this leads to
confusion.

Table 1 shows the SED results of the event “washing dishes”
in two acoustic scenes, “bank” and “home,” using the toy dataset.
The results are for two models. The intersection over union (IoU)
and hybrid metric (HM) are described later (in sec. 3). The dif-
ference between the two models is seen only in the number of the
FPs in each scene. Model 1 misdetects the sound event “washing
dishes” as FP only in the scene “bank.” In contrast, the model 2
misdetects “washing dishses” as FP only in “home.” The perfor-
mance of model 1 is equal to that of model 2 in terms of the F-score.
However, the misdetection of “washing dishes” in “bank” as FP is
a more severe mistake than the misdetection in “home.” For this
reason, model 2 may give rise to serious trouble or confusion in
practice. This problem is caused by disregarding the relationship
between sound events and scenes.

3. EVALUATION METRIC CONSIDERING
RELATIONSHIPS BETWEEN

SOUND EVENTS AND SCENES

When using the conventional metric, the F-score, the meanings of
the misdetected sound event “birdsong” in the scenes “airplane” and
“park” are the same (e.g., FP). However the sound event “birdsong”
rarely occurs in the scene “airplane.” If the sound event “birdsong”
occurs in the scene “airplane,” people will be confused. The model
in which the relationship between sound events and scenes is ig-
nored may give rise to severe or catastrophic problems in practice.
To tackle this problem, we propose a new evaluation metric that
considers the relationship between sound events and scenes.

As the relationship, we use an incidence relationship between
sound events and scenes (which event occurs in which scene). In
particular, we incorporate the following two points into the pro-
posed metric:
• misdetected sound events that are present in target scenes are

evaluated as mild mistakes.
• misdetected sound events that are not present in target scenes

are evaluated as severe mistakes.

Here we review the conventional evaluation metrics. The
F-score is used for detection tasks such as SED and information
retrieval. In other detection tasks such as object detection, IoU is
utilized to evaluate the performance of systems. IoU is calculated
as

IoU =
2TP

2TP + 2FP + 2FN
, (3)

where the difference between the F-score (Eq. 2) and IoU (Eq. 3) is
only in the weights of mistakes, FP and FN. For IoU, the weights
of mistakes are larger than those of the F-score. This indicates that
IoU treats the mistakes severely compared with the F-score.

To apply the relationship between sound events and scenes to
the proposed metric, we take advantage of the difference between
the F-score and IoU with respect to the mistake. Our proposed eval-
uation metric is calculated as

HM =
2TP

2TP + FP1 + 2FP2 + FN
, (4)

where FP1 and FP2 denote the numbers of segments of the FPs that
are present in target scenes and those that are not present in target
scenes, respectively. In this way, the proposed evaluation metric uti-
lizes the misdetection weight of the F-score for a mild mistake and
that of IoU for a severe mistake. By switching two misdetection
weights between two types of the FP, we incorporate the relation-
ship between the sound events and scenes into the proposed method.
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Table 2: Experimental conditions

JSSED
Development: 1,200 min Evaluation: 300 min
TUTDB
Development: 192 min Evaluation: 74 min

Shared layers
Network 3CNN
# channels 128, 128, 128
Filter size 3×3
Pooling size 8×1, 2×1, 2×1 (max pooling)
Scene layers
Network 2CNN & 1FC
# channels 256, 256
Filter size 3×3
Pooling size 1×25, 1×20 (max pooling)
# units in FC layer 32
Event layers
Network 1BiGRU & 1FC
# units in GRU layer 32
# units in FC layer 32

Table 3: Overall performance of sound event detection

Metric micro macro
CRNN MTL CRNN MTL

JSSED
F-score 27.88% 28.39% 17.25% 17.42%
IoU 16.20% 16.55% 7.73% 7.83%
HM 27.83% 28.36% 13.47% 13.60%

TUTDB
F-score 45.47% 46.00% 15.28% 14.40%
IoU 29.42% 29.87% 10.10% 9.48%
HM 42.04% 42.95% 14.35% 13.60%

Moreover, the magnitude relation among the F-score, IoU, and the
proposed method HM for the same datasets and trained models is

IoU ≤ HM ≤ Fscore . (5)

Table 1 shows the SED results in terms of IoU and HM in ad-
dition to the previously mentioned results in terms of F-score (in
sec. 2.2). The performance of model 1 is equal to that of model 2
in terms of the F-score and IoU. The ranking of the two models
changes when using the proposed metric HM. This is because the
misdetected event “washing dishes” in the scene “bank” is treated
as a severe mistake. Using the proposed metric is helpful for choos-
ing/building systems that do not confuse people or cause severe
problems in practice. In this work, the incidence relationship be-
tween sound events and scenes (which event occurs in which scene)
on the development set, as shown in Fig. 1, is employed. Note that if
an event occurs at least once in a scene, it is regarded as “presence.”
Fig. 2 shows the conventional (left) and proposed (right) Venn di-
agram representations. In each venn diagram, the outer frame in-
dicates the set of all the detection results. The left and right inner
circles represent the sets of the predicted and actual classes being
positive, respectively. In the proposed metric, FP is divided into
two types, FP1 and FP2. Note that the FNs occur only in the target
scenes, as can be seen in Fig. 2.

4. EXPERIMENTS
4.1. Experimental conditions
To evaluate our proposed metric, we used two datasets with sound
event and scene labels. As the first dataset, we used the joint sound
scene and event dataset (JSSED) [20] consisting of synthesized au-
dio clips with the 32 events and 10 scenes listed in Fig. 1. As
the second dataset, we aggregated TUT Sound Events 2016 [24]
and 2017 [25] and TUT Acoustic Scenes 2016 [24], and 2017 [25].
Hereafter, those datasets [24, 25] are referred to as TUTDB. We se-
lected audio clips within acoustic scenes “city center,” “home,” “of-
fice,” and “residential area,” in which the 25 events listed in Fig. 1
are included. Furthermore, we manually annotated the sound event
labels within the scene “office” in accordance with the procedure
described in [24,25]. The sound event labels annotated in this work
are available in [26].

As the input of the networks, we used the 64-dimensional log
mel-band energies, which have a 40 ms window with a 20 ms hop
size. In this work, FP1 and FP2 are defined in Fig. 1 as the inci-
dence relationship between sound events and scenes (which event
occurs in which scene) on the development sets.

For comparison, we used two methods, CNN-BiGRU (CRNN)
[9] and the multitask-learning-based model of SED and ASC
(MTL) [21], which aims to train the sound events and scenes ef-
fectively. The joint model has a shared part of networks of SED and
ASC, “shared layers,” as shown in Table 2. The joint method has
a hyperparameter, β which is a weight of loss function for ASC. In
this experiment, we used β = 10−6 (JSSED) and 10−4 (TUTDB)
tuned using only the development set. Other experimental condi-
tions are shown in Table 2

4.2. Experimental results
As previously described, for the toy dataset, we verified the util-
ity of the proposed metric by comparing it with conventional met-
rics. In this section, we demonstrate that the utility of the proposed
metric in providing more realistic evaluation of datasets with sound
events and scenes. More specifically, we demonstrate how severe
misdetections affect the performances of SED systems. The pro-
posed metric is expected to provide a more realistic evaluation of
events in scenes e.g., the event “birdsong” in the scene “airplane”
is unrealistic. If the HM of a SED system is improved compared
with other systems, this indicates that the SED system yield accu-
rate detections considering the relationship between sound events
and scenes. Since direct comparison of metrics is difficult, we ob-
served the amount of changes between the two systems in terms of
the F-score, IoU, and HM.

Table 3 shows the overall performances of SED in terms of
the F-score, IoU, and HM. Note again that the MTL aims to train
the relationship between sound events and scenes. If the HM of
the MTL is better than the CRNN, the HM is useful in evaluat-
ing whether SED systems consider the relationship between sound
events and scenes. The results indicate that the MTL achieves better
detection performances than the CRNN in terms of the F-score and
IoU. Moreover, since the HM of the MTL was improved compared
with that of the CRNN, the proposed metric is useful in evaluat-
ing whether SED systems consider the relationship between sound
events and scenes.

Table 4 shows the experimental results of SED for each event.
Only events for which the performance of SED changed signifi-
cantly are listed. The numbers to the right of arrows indicate the
amount of change between the CRNN and MTL in terms of each
metric. The results show that the MTL achieves a reasonable per-
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Table 4: Performance of SED for each event. Numbers to the right of arrows indicate amount of change.

Event JSSED TUTDB
buspassby phone car fan

F-score CRNN 30.57% ↓0.51 35.14% ↑1.35 51.44% ↓0.48 71.29% ↑0.96
MTL 30.08% 36.49% 50.96% 72.25%

IoU CRNN 18.04% ↓0.34 21.32% ↑0.99 34.63% ↓0.43 55.38% ↑1.28
MTL 17.70% 22.31% 34.20% 56.56%

HM CRNN 30.53% ↓0.50 35.00% ↑1.36 50.86% ↓0.73 56.96% ↑3.24
MTL 30.03% 36.36% 50.13% 60.20%

Table 5: SED results of “fan” in terms of TP, FP, and FN for each
scene. Green and gray cells represent FP1 and FP2, respectively.

Scene city home office residential
center area

# TPs 0 0 354481 0
CRNN # FPs 1880 220022 419 28257

# FNs 0 0 34979 0
# TPs 0 0 321127 0

MTL # FPs 3188 149271 318 25556
# FNs 0 0 68333 0

Table 6: SED results of “car” in terms of TP, FP, and FN for each
scene. Green and gray cells represent FP1 and FP2, respectively.

Scene city home office residential
center area

# TPs 214816 0 0 97417
CRNN # FPs 449257 13942 2 99671

# FNs 11094 0 0 15483
# TPs 204515 0 0 92348

MTL # FPs 420216 19460 0 89623
# FNs 21395 0 0 20552

formance compared with the CRNN. The SED performance of the
listed events showed larger changes between the CRNN and MTL in
terms of the HM than the F-score, even though HM ≤ F (Eq. 5).
This is because the misdetected events absent from target scenes
are penalized severely. This indicates that the HM is useful for
considering the relationship between sound events and scenes. In
particular, the HM showed a significant change for the event “fan”
compared with the other metrics. This indicates that the event “fan”
was detected more accurately when using the MTL than when using
the CRNN. In other words, the event “fan” was trained effectively
considering the relationship between the events and scenes. This is
because “fan” is closely related to “office,” that is, it accounts for
over 20% of the total number of active time-frames, as shown in
Fig. 3. We could say that the detection of “fan” was more realistic
when using the MTL than when using the CRNN.

To investigate the utility of the proposed metric in detail, we
listed the results of two events, “fan” and “car,” for each scene, as
shown in Tables 5 and 6, respectively. In the two tables, green and
ash gray cell colors represent the FP events that are absent from tar-
get scenes, FP2, and present in target scenes, FP1, respectively.
The result in Table 5 shows that the number of severely misde-
tected events was smaller when using the MTL than when using
the CRNN. Tables 4 and 5 show that the HM enables accurate eval-

20.5%

car 23 other events
338,810 frames 923,850 frames

1,652,120 active frames

55.9%

fan

23.6%

389,460 frames

Figure 3: Numbers of active time-frames of events “car” and “fan.”

uation with the MTL owing to consideration of the relationship be-
tween sound events and scenes. On the other hand, the results in
Table 6 show that the number of severely misdetected events was
significantly larger in the scene “home” when using the MTL than
when using the CRNN. In a previous work [21], it was reported that
the relationship between sound events and scenes can be trained
more effectively by using the MTL than by using the CRNN. How-
ever, the results show that some of the events can be misdetected
severely using the MTL. Moreover, the results indicate that the
severely misdetected events, which correspond to large numbers of
time frames (e.g., “car” accounts for roughly 20% of the total num-
ber of active time-frames, as can be seen in Fig. 3), affect the overall
macro-F-score, IoU, and HM.

The results of all experiments show that the proposed metric can
accurately evaluate whether SED systems consider the relationship
between sound events and scenes. Severely misdetected events can
cause the severe problems in practice. In our proposed metric, se-
vere misdetections were penalized severely to avoid confusing peo-
ple or causing severe problems in practice. In these experiments,
to define severe misdetections, the incidence relationship between
sound events and scenes on the development set is used. When there
is a large discrepancy in the incidence relationship between the de-
velopment and evaluation sets, the HM may not be able to assess
the performance of SED correctly in these experiments. For exam-
ple, on the development set, “children” does not occur in “home,”
as shown in Fig. 1. In these experiments, “children” in “home” is
treated as a severe misdetection. This is not always true. To avoid
such results, dataset-independent relationship between sound events
and scenes must be considered.

5. CONCLUSION
In this paper, we proposed a new evaluation metric for SED. In
the proposed metric, we used two types of misdetection (mild and
severe misdetections) on the basis of incidence relationship be-
tween sound events and scenes (which event occurs in which scene).
The results revealed that the proposed metric can accurately evalu-
ate whether SED systems consider the relationship between sound
events and scenes. In future work, to define severe misdetec-
tions, prior knowledge of people should be employed as dataset-
independent relationships between the sound events and scenes.
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