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ABSTRACT

This document presents DCASE-models, an open–source Python
library for rapid prototyping of environmental sound analysis sys-
tems, with an emphasis on deep–learning models. Together with a
collection of functions for dataset handling, data preparation, fea-
ture extraction, and evaluation, it includes a model interface to stan-
dardize the interaction of machine learning methods with the other
system components. This also provides an abstraction layer that al-
lows the use of different machine learning backends. The package
includes Python scripts, Jupyter Notebooks, and a web application,
to illustrate its usefulness. The library seeks to alleviate the pro-
cess of releasing and maintaining the code of new models, improve
research reproducibility, and simplify comparison of methods. We
expect it to become a valuable resource for the community.

Index Terms— Python library, deep learning, audio classifica-
tion, sound event detection, reproducibility

1. INTRODUCTION

Fuelled by an enormous increase in available data, substantially
more-powerful computer hardware, and significantly improved al-
gorithms, recent years have witnessed an explosion of machine
learning methods across almost all research areas. In particular,
deep–learning techniques have become ubiquitous since they have
brought new state–of–the–art results in several research fields—
such as computer vision, speech recognition, and natural language
processing—, and have proved successful in realistic problems [1].

As a result, most modern signal processing methods and models
are considerably more complex compared to those of a decade ago,
and heavily rely on the data and software used for their implementa-
tion [2]. Besides, implementation details can have a profound effect
on the reported performance of a method [3–5]. Therefore, it has
become increasingly difficult to be able to reproduce the findings
or to compare a new method to earlier ones, only based on the de-
scription of research systems found in publications [2, 5]. This can
slow down progress in the research community, due to the amount
of effort devoted to reimplementing methods and to deal with all
details of different software packages, and datasets. For the optimal
reuse of scientific research, numerous authors and institutions are
advocating not only for open–access publications and data but also
for the release of software and models that can be of use across a
variety of domains [2, 6, 7]. This poses several challenges, such as
the development of best practices guidelines to stick to, the need
for long–term funds for those initiatives, and the coordination of re-
search efforts–which after all is crucial to the quality of research [8].

The research community around the annual Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) Workshop is
also part of this phenomenon since most recent works involve deep–
learning techniques. For instance, 50 out of 54 papers published at
the proceedings of the DCASE 2019 Workshop use models based
on deep neural networks in their experiments. Fortunately, the com-
munity is increasingly endorsing transparency and best practices for
reproducible research. The DCASE Challenge provides an annual
benchmark of methods for different tasks [9, 10], and since 2019
it gives specific awards for open–source and reproducible methods.
There are numerous readily available datasets [11–18] and various
authors publicly release software tools as well as easily usable and
well documented implementations of their methods [19–22].

While all such resources are of great value for the progress of
the field, there are still several opportunities to improve research re-
producibility. For instance, usability aspects have to be considered
(documentation, installability, etc.) so that a piece of code is useful
rather than simply available. In addition, when trying to compare
results of a new method with earlier methods, it is often the case that
researchers have to reimplement those baselines or manage to find
and modify an existing implementation. This is time–consuming
and implies dealing with a variety of different coding conventions
and software tools. Together with the intrinsic complexity of deep–
learning methods, the process of delving into a given DCASE prob-
lem can be a tough one, especially for newcomers.

This paper introduces the first release of DCASE-models, an
open-source Python library, whose main goal is to facilitate vari-
ous aspects of the typical research pipeline of DCASE related prob-
lems with a particular emphasis on deep–learning models. The li-
brary has a careful design for easy extension and integration with
other software tools. It offers an abstraction to common tasks, such
as data preparation, data augmentation, feature extraction, model
training, and evaluation. This allows for rapid prototyping of new
methods and simplifies the efforts needed to release (and maintain)
the code of a new model. Furthermore, the library aims to provide
reference implementations of several baselines—including already
trained models—to facilitate the comparison of methods. In this
way, we strive for a low barrier to entry for students and researchers
new to the field. Whenever possible, the library leverages from the
original authors’ implementations and existing software tools, such
as sed eval [21] or VGGish [23].

The package includes thorough documentation that covers the
usage of the resources already available and describes the steps
needed for extending the library, for instance, with new datasets,
features and models. It also contains Python scripts, Jupyter Note-
books and a web interface, to illustrate the usefulness of the library.
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2. DESIGN PRINCIPLES AND PRACTICES

The library provides a simple and lightweight set of basic compo-
nents that are generally part of a computational environmental audio
analysis system. Users can exploit the library functions to tackle
various tasks—such as acoustic scene classification, sound event
detection, and audio tagging—while experimenting with improve-
ments or extensions of its components.

Apart from a collection of functions for dataset handling, data
preparation, feature extraction, and evaluation (most of which rely
on existing tools), DCASE-models includes a model interface to
standardize the interaction of machine learning methods with the
other system components. This also provides an abstraction layer
to make the library independent of the backend used to implement
the machine learning model (e.g. Keras,1 PyTorch,2 TensorFlow,3

Scikit-learn4). The standardized behavior of the machine learning
method implementation allows the comparison of different models
in a straightforward manner. The library currently includes Keras
implementations of several deep–learning models reported in the
literature, which are ready to use with minimal effort. As a result,
one can get an application with a few lines of code (see Section 4).

Regarding the usability of the library, the design and implemen-
tation are aimed to make it easy to learn and use. It is organized
in a flat package layout with classes that define concise interfaces.
All functions are thoroughly documented and include example code
that demonstrates their usage. Besides, we follow PEP-8 recom-
mendations to make sure code is readable and easy to follow. The
documentation of the library is prepared using Sphinx and includes
clear instructions on how to extend different components. The lat-
est stable release can be smoothly installed from PyPI and only has
requirements of other well-known, portable and tested packages.

Considering the sustainability and maintainability of the library,
we strive for adopting modern open–source software development
practices, as suggested in [2]. The code is released under the MIT li-
cense and all development is conducted on GitHub. This makes the
project readily accessible for the community to use, test, contribute,
and bring support. It also helps the release of updates by keeping a
record of the changes and versions and incorporate other software
development services, such as continuous integration testing.

3. LIBRARY ORGANIZATION AND DESCRIPTION

Figure 1 shows a diagram of DCASE-models main classes, which
also includes some specializations of each base class that are avail-
able. Next, a description of the main classes and functionalities is
presented, following the order of the typical pipeline: dataset prepa-
ration (3.1); data augmentation (3.2); feature extraction (3.3); data
loading (3.4); data scaling (3.5); and model handling (3.6).

3.1. Dataset

This is the base class designed to manage a dataset, its paths, and
its internal structure. It includes methods to download the data,
resample the audio files, and check that both processes succeed.

The library covers several publicly available datasets related to
different tasks. At the moment, these are: ESC [11] and Urban-
Sound8k [12] for audio classification; TAU Urban Acoustic Scenes

1https://keras.io
2https://pytorch.org
3https://www.tensorflow.org
4https://scikit-learn.org

2019 and 2020 [14, 18] for acoustic scene classification; URBAN-
SED [19], TUT Sound Events 2017 [13] and MAVD-traffic [17]
for sound event detection; and FSDKaggle2018 [15] and SONYC-
UST [16] for audio tagging. In next releases of the library other
relevant datasets will be included.

Each dataset is implemented in the library as a class that in-
herits from Dataset. This design provides a common and simple
interface to work with any dataset. For instance, to use the Urban-
Sound8k dataset, it is enough to initialize its class with the path to
the data folder, as follows.
>>> dataset = UrbanSound8k(DATASET_PATH)

Then, the following methods are used to download the dataset
and change its sampling rate (to 22050 Hz).
>>> dataset.download()
>>> dataset.change_sampling_rate(22050)

Most of the datasets devised for research include a fold split
and a corresponding evaluation setup (e.g. 5–fold cross–validation).
This fold split is generally carefully selected to avoid biases and
data contamination [24]. In order to keep the results comparable to
those reported in the literature, DCASE-models uses, whenever
available, the predefined splits for each dataset. However, the user
may define different splits or evaluation setups if needed.

3.2. AugmentedDataset

The previously defined dataset instance can be expanded using
data augmentation techniques. The augmentations implemented so
far are pitch–shifting, time–stretching, and white noise addition.
The first two are carried out by means of pysox [25].

An augmented version of a given dataset can be obtained by
initializing an instance of the AugmentedDataset class with the
dataset as a parameter, as well as a dictionary containing the
name and parameters of each transformation.

>>> aug_dataset = AugmentedDataset(dataset,
augmentations)

After initialization, the following method will perform the ac-
tual augmentation and create new audio files for every dataset ele-
ment according to the type and parameters of each augmentation.
>>> aug_dataset.process()

The augmented dataset is indeed an instance of Dataset, so it can
be used as any other dataset in the following steps of the pipeline.

3.3. FeatureExtractor

This is the base class to define different types of feature representa-
tions. It has methods to load an audio file, extract features, and save
them. It can also check if the features were already extracted.

Four types of feature representations have been implemented as
specializations of the base class, namely Spectrogram, MelSpectro-
gram, VGGish [23], and Openl3 [26]. The first two are classic time–
frequency representations which are implemented using librosa
functions. The last two are pre–trained neural–network–based mod-
els that extract embeddings from the audio signal. Openl3 is a re-
cently proposed neural network trained on audio–visual informa-
tion. VGGish is a deep convolutional neural network trained on the
Audioset dataset that is also used as a feature extractor.

A FeatureExtractor is initialized with some parameters.
For instance, to define a Spectrogram feature extractor the pa-
rameters are: length and hop in seconds of the feature representation
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Figure 1: Class diagram of DCASE-models showing all base classes and some of the implemented specializations.

analysis windows (model’s input); window length and hop size (in
samples) for the short-time Fourier Transform (STFT) calculation;
and the sampling rate. If the audio files are not sampled at this fre-
quency, they are converted before calculating the features.

>>> features = Spectrogram(
sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=512, sr=22050)

After initialization, the following method computes the features
for each audio file in the dataset.

>>> features.extract(dataset)

Once the features are extracted and saved to disk, they can be
loaded using DataGenerator as explained in the following.

3.4. DataGenerator

This class uses instances of Dataset and FeatureExtractor
to prepare the data for model training, validation and testing. An
instance of this class is created for each of these processes.

>>> data_gen_train = DataGenerator(
dataset, features, train=True, folds=[’train’])

>>> data_gen_val = DataGenerator(
dataset, features, train=False, folds=[’val’])

At this point of the pipeline, the features and the annotations for
training the model can be obtained as follows.

>>> X_train, Y_train = data_gen_train.get_data()

Additionally, instances of DataGenerator can be used to
load data in batches. This feature is especially useful for training
models on systems with memory limitations.

3.5. Scaler

Before feeding data to a model, it is common to normalize the data
or scale it to a fixed minimum and maximum value. To do this, the
library contains a Scaler class, based on scikit-learn pre-
processing functions, that includes fit and transform methods.

>>> scaler = Scaler("standard")
>>> scaler.fit(X_train)
>>> X_train = scaler.transform(X_train)

In addition, the scaler can be fitted in batches by means of pass-
ing the DataGenerator instance instead of the data itself.

>>> scaler.fit(data_gen_train)

It is also possible to scale the data as it is being loaded from the
disk, for instance, when training the model. To do so, the Scaler
can be passed to the DataGenerator after its initialization.
>>> data_gen_val.set_scaler(scaler)

3.6. ModelContainer

This class defines an interface to standardize the behavior of ma-
chine learning models. It stores the architecture and the parameters
of the model. It provides methods to train and evaluate the model,
and to save and load its architecture and weights. It also allows the
inspection of the output of its intermediate stages (i.e. layers).

The library also provides a container class to define Keras
models, namely KerasModelContainer, that inherits from
ModeContainer, and implements its functionality using this spe-
cific machine learning backend. Even though the library currently
supports only Keras, it is easy to specialize the ModelContainer
class to integrate other machine learning tools, such as PyTorch.

Each model has its own class that inherits from a specific
ModelContainer, such as KerasModelContainer. The
models currently implemented using Keras are: Multi–layer Per-
ceptron (MLP), SB-CNN [20], SB-CNN-SED [19], A-CRNN [27],
MST [28], SMel [29] and VGGish [23]. Other models are in prepa-
ration for inclusion in next releases of the library.

A model’s container has to be initialized with some parameters.
>>> model_cont = SB_CNN(**model_params)

These parameters vary across models, among which the most
important are: input shape, number of classes, and evaluation met-
rics. Specific parameters may include the number of hidden layers
or the number of convolutional layers, among others.

The ModelContainer class has a method to train the model.
>>> model_cont.train((X_train, Y_train),

**train_params)

Training parameters can include, for example, number of
epochs, learning rate and batch size. To train the model in batches,
the DataGenerator object can be passed to the train method
instead of the pre–loaded data.
>>> model_cont.train(data_gen_train, **train_params)

Performing model evaluation is also simple. For instance, the
following code uses the test set for evaluating the model.
>>> data_gen_test = DataGenerator(

dataset, features, train=False, folds=[’test’])
>>> X_test, Y_test = data_gen_test.get_data()
>>> results = model_cont.evaluate((X_test, Y_test))
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Figure 2: Screenshot of the web application for sound classification developed with DCASE-models as backend. In the Data visualiza-
tion tab, the user can explore the training set by visualizing a 2D projection (principal component analysis, PCA) space of some model’s
intermediate output. It is also possible to inspect wrongly classified instances, visualize the feature representation, and listen to the audio files.

The results’ format depends on which metrics are used. By de-
fault, the evaluation is performed using metrics available from the
sed eval library [21]. Therefore, the results are presented ac-
cordingly. Nevertheless, DCASE-models enables the use of oth-
ers evaluating frameworks such as psds eval [22], or the use of
user–defined metrics in a straightforward way.

When building deep–learning models it is common practice to
use fine–tuning and transfer learning techniques. In this way, one
can reuse a network that was previously trained on another dataset
or for another task, and adapt it to the problem at hand. This type
of approach can also be carried out with the ModelContainer.

4. APPLICATION EXAMPLES

The Python package of the library includes a set of examples, orga-
nized into three different categories, which illustrate the usefulness
of DCASE-models for carrying out research experiments or devel-
oping applications. These examples can also be used as templates
to be adapted for implementing specific DCASE methods.

Firstly, some Python scripts are provided, that perform each
step in the typical development pipeline of a DCASE task, i.e down-
loading a dataset, data augmentation, feature extraction, model
training, fine–tuning, and model evaluation. See the documentation
of the library for a tutorial that follows all these examples.

Secondly, several Jupyter Notebooks are also included whose
aim is to replicate some of the experiments reported in the literature
using DCASE-models, in particular those in [17, 19, 20, 27, 29].
We plan to add some other implementations of recent papers.

Finally, a web interface for sound classification is also in-
cluded as a proof of concept of the potential of DCASE-models to
build high–level applications for computational environmental au-
dio analysis. It gives access to most of the library’s functionalities
through a graphical user interface. Besides, it provides visualiza-

tion tools to explore the dataset and to inspect the errors made by
the model. It is also possible to listen to the audio files of the dataset
and to test the model on an audio file provided by the user. Figure 2
shows a screenshot of the web application. The HTML front–end is
developed with the dash library.5

5. CONCLUSION

In this paper, the first release of DCASE-models is presented.6

This open–source Python library provides a number of classes use-
ful for rapid prototyping solutions for DCASE related problems,
with a particular emphasis on deep–learning models. The library
has a flat and light design that allows easy extension and integration
with other existing tools. The design also provides an abstraction
layer that seeks to mitigate the impact of changes in the backends
used for implementing the machine learning models. We put con-
siderable effort into the usability aspects of the library to encour-
age its adoption by the DCASE community. In particular, we hope
it turns out helpful for those students and researchers new to the
field. In this sense, we look forward to other researchers’ feedback
and contributions. Additionally, we believe that the library could
simplify the process of releasing and maintaining the code of new
models. This, in turn, could improve research reproducibility and
simplify methods comparison. To this respect, the package includes
a set of application examples, some of which replicate a number of
experiments reported in the literature. Besides, a web interface for
sound classification is provided as a proof of concept of the useful-
ness of the library for developing high–level applications for com-
putational analysis of acoustic scenes and sound events. We foresee
an interesting use case for the library as a tool to facilitate under-
standing and explainability of DCASE machine learning models.

5https://plotly.com/dash/
6https://github.com/MTG/DCASE-models
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