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Task: Describe the contents of audio extracts with
�uent English sentences
 —> Contextualize sound events to eventually achieve
a higher level of understanding of audio scenes
Current approaches:
• Encoder-decoder models with attention
 —> Language modeling is learned from scratch
• Textual conditioning provides vocabulary 
guidance in addition to audio embeddings
  —> Audio-based keyword extraction or caption
retrieval systems trained on the captioning dataset

Proposition: Combine pre-trained audio tagging
and large-scale language models

•   https://github.com/felixgontier/dcase2021aac
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Conditioning setup
• Sequential embeddings
are critical to captioning
• Text-only conditioning
is better than audio-only
  —> Better use of the text-only BART pre-training setting?
• Both PANNs and VGGish complement YAMNet, PANNs are more informative

• Closed vocabulary of 521 YAMNet (AudioSet) tags
• Single learnable linear layer
• Audio representation added to text and positional embeddings

AudioCaps dataset [2]
• Training on 49000 clips, 10s each, single caption
• Validation/Evaluation on 485/955 clips, 5 captions
• Subset of AudioSet: in-domain audio for pre-trained
tagging models

Training:
• Cross-entropy loss on BART token vocabulary
• Stable training observed until convergence, even when
fully �ne-tuning
• Results reported over 3 runs with di�erent random seeds
• Sampling on YAMNet logits at training: data augmentation
• Most likely tags taken at inference
Evaluation:
• Machine translation metrics (n-gram matching): 
BLEU-1/2/3/4, METEOR, ROUGE-L, CIDEr
• Graph parsing metric for semantics: SPICE
• SPIDEr: average of CIDEr and SPICE, main metric of 
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BART conditional language model [1]
• Standard transformer encoder-decoder architecture
• Byte-pair encoding tokenization: 50265 tokens in vocabulary
• Pre-training scheme: denoising heavily corrupted text
• Transfer learning to AAC by simply �ne-tuning with 
multi-modal inputs
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Model performance
• On par or better than the state of the art on AudioCaps
• Higher BLEU-1/2/3 than reference captions cross-validation (human score)

Complementary experiments
• Random initialization: The performance improvement from BART pre-training
is limited with su�cient amounts of training data
• Freezing: BART decoder is already e�ective to model caption structure
• Capacity: A marginal decrease in performance is
observed with 3 times fewer parameters
—> Low diversity in caption structure and vocabulary?
• Task-speci�c �ne-tuning: The initial training loss is 
lower with summarization checkpoints

Paper ID: 57


