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Taxonomy in 2021

All machines

Machine type Fran

Gearbox

Pump Slide rail ToyCar ToyTrain Valve

Section:

v Unit for calculating performance metrics

v Almost machine product and similar to
"machine ID" in 2020

Dataset in 2021

O ToyADMOS2 [Harada+, 2021] & MIMII DUE [Tanabe+, 2021]
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Task setup in 2021

O Similar to 2020, but with some differences
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Baseline systems

ﬁ. Autoencoder (AE)-based outlier detector (same baseline as 2020)
B Training: minimizing reconstruction error of normal training data
B Assumption: Reconstruction is hard for unknown sounds = Anomalies
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/2. Outlier exposure (OE) based on section classifier (= 1st rank in 2020)\
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