SQUEEZE-EXCITATION CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR AUDIO-VISUAL SCENE CLASSIFICATION

ACOUSTIC SCENE CLASSIFICATION BACKGROUND

Specific task of Machine Listening field Tag an audio clip into a pre-defined scene Proposed in the first DCASE Challenge edition (2013) Different approaches have been addressed Audio representations, ensembles, data augmentations

MAIN OBJECTIVES

Improve framework accuracy using visual data Without constraint (number of parameters) Complexity - accuracy

DATASET

- TAU Urban AudioVisual Scenes 2021
- 10 scenes from 12 European cities
- 10 second audios -> 34 hours of audio data
- Official partition -> 70-30

TRAINING PROCEDURE

- 1. Train audio network
- 2. Train recurrent layer of visual network
- 3. Train fusion layers of full framework -> final fine-tuning
- 200 epochs, 32 batch size and 16 for full, audio mixup, 1 second

SYSTEM COMPLEXITY

Module	Parameters
Audio	323k
Visual	14M (105k trainable)
Full	15M (272k trainable)

AUDIO MODULE

Input 3 x 3

Following previous submissions: 3-channel audio representation

Mel and Gammatone filterbanks

Audio resampled to 44.1 kHz -> (64, 50, 3)

Network

Fully convolutional -> Conv-StandardPOST block Max Pooling and Dropouts after each block Global Average Pooling

CHALLENGE COMPARISON

	Submission	information			Eva	luation dataset	
Rank	Submission label	♦ Name ♦	Technical Report	Official \$	Team rank ili 💠	Logioss ili 🔻	Accuracy with 95% confidence interval all
1	Zhang_IOA_task1b_3	ZhangIOA3	O	1	1	0.195	93.8 % (93.6 - 93.9)
2	Du_USTC_task1b_4	USTC_t1b_4	•	5	2	0.221	93.2 % (93.0 - 93.4)
3	Okazaki_LDSLVision_task1b_4	504	•	9	3	0.257	93.5 % (93.3 - 93.7)
4	Yang_THU_task1b_3	2trans_cnn	•	10	4	0.279	92.1 % (91.9 - 92.3)
5	Hou_UGent_task1b_4	HTCH_4	•	16	5	0.416	85.6 % (85.3 - 85.8)
6	Pham_AIT_task1b_3	Pham_AIT	•	17	6	0.434	88.4 % (88.2 - 88.7)
7	Naranjo-Alcazar_UV_task1b_1	AVSC_SE_CRNN	D	18	7	0.495	86.5 % (86.3 - 86.8)
8	Boes_KUL_task1b_1	muls_tr(1)	0	23	8	0.653	74.5 % (74.2 - 74.8)
9	DCASE2021 baseline	Baseline				0.662	77.1 % (76.8 - 77.5)

VISUAL MODULE

Input

224 x 224 images to match VGG16 input 5 frames per second -> (5, 224, 224, 3)

Network

VGG16 pre-trained with places365 -> TimeDistributed

VGG16 as feature extractor -> frozen weights

Global Average Pooling -> (5, 512)

Trainable GRU layers and final Dense layers

EXPERIMENTS

		Modality		
	Audio-Only	Visual-Only	Multi-Modal (Early Fusion)	Multi-Modal (I Fusion)
log-Mel Gammatone	68.4 69.0	87.0 87.0	88.5 89.2	88.7 90.0
Table	e 1: Accuracy Results on t	he TAU Audio-Visual Urbo	ın Scenes 2021 yalidation	partition
Table	e 1: Accuracy Results on t	he TAU Audio-Visual Urbo Parameters	n Scenes 2021 validation	partition
	e 1: Accuracy Results on the solution of the s		nn Scenes 2021 validation Multi-Modal (La	

CONCLUSION

System outperforms baseline accuracy with few parameters compared to other participants

Both models are trained in isolation

The results show the combination of two domains improves system accuracy

Future work -> slim models for real time inference