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Abstract

Over the past few years, convolutional neural networks
(CNNs) have been established as the core architecture for
audio classification and detection. Recently, Transformers,
which are pure attention-based architectures, have achieved
excellent performance in various fields, showing that CNNs
are not essential. In this paper, we investigate the reliance on
CNNs for sound event localization and detection by
Introducing the Many-to-Many Audio  Spectrogram

Transformer (M2M-AST), a pure attention-based architecture.

We adopt multiple classification tokens in the Transformer
architecture to easily handle various output resolutions.
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Sound Event Localization and Detection

 SELD recognizes the sound event and its direction simult
aneously
* |nput:
« Directional microphone recordings from a tetrahedral array
« First-order Ambisonic (FOA) recordings

* Output:
 Active sound event
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e Spatial location
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System overview of sound event localization and detection
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Proposed Method

Many-to-Many Audio Spectrogram Transformer (M2M- AST)
« M2M-AST focus on applying standard Transformer architecture for SELD

» Audio Spectrogram Transformer (AST) B!
« Patch embedding (token) is extracted from small image patch through linear projection

« Classification token is an extra learnable embedding to perform classification
« Positional embedding is a learnable embedding to make spatial information between patches

« Difference compared to AST:

 Multi-channel feature image images are required to obtain spatial location information
« Multiple classification tokens are used to make a series of output rather than single output
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