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ABSTRACT
We introduce several novel knowledge distillation techniques for
training a single shallow model of three recurrent layers for acoustic
event detection (AED). These techniques allow us to train a generic
shallow student model without many convolutional layers, ensem-
bling, or custom modules. Gradual incorporation of pseudolabeled
data, using strong and weak pseudolabels to train our student model,
event masking in the loss function, and a custom SpecAugment pro-
cedure with event-dependent time masking all contribute to a strong
event-based F1-score of 42.7%, which matches the top submission
score, compared to 34.7% when training with a generic knowledge
distillation method. For comparison to state-of-the-art performance,
we use the ensemble model of the top submission in the challenge
as a fixed teacher model.

Index Terms— Acoustic event detection, knowledge distilla-
tion, pseudolabeling, SpecAugment

1. INTRODUCTION

Acoustic event detection (AED) is the task of predicting sound
events and their time boundaries. It is an emerging area of research
as the ability to correctly detect the start and end times of sound
events has many useful practical applications in media indexing and
retrieval [1], surveillance [2], enhancing smart home devices’ abil-
ity to interpret the acoustic environment of the home [3]. Compared
to audio tagging tasks, acoustic event detection remains a challeng-
ing area of research due to the difficulty of obtaining high-quality
annotated clips which contain labels of onset and offset times.

We focused on task four of the 2019 edition of DCASE as it is
solely focused on AED and provides a test dataset that can be com-
pared with the top performances in the challenge [4]. In this task,
the top-performing submissions are ensembles of models [5, 6] or
comprised of multiple layers of convolutional layers [7, 6] and mod-
ules with custom architecture [5], which often consume significant
memory and are less practical to use in resource-constrained mobile
devices. Our focus is on using knowledge distillation techniques
to achieve a single shallow model of three recurrent layers with a
small degradation in accuracy. We used the ensemble model of the
top submission in the challenge as a fixed teacher model.

Recent results on noisy student training explored promising
techniques for an automatic speech recognition (ASR) task [8].
Firstly, they tried gradually introducing harder samples to the train-
ing of the student model by applying a score on each utterance-
transcript pair and lowering the cutoff score for each generation of
training. Curriculum learning applies a similar concept in slowly
expanding the training set for the student model. Secondly, they
performed SpecAugment [9] and increased the time masking length
to produce harder samples for the student model. To our knowledge,

neither techniques have been explored for AED before. We apply
gradual incorporation of pseudolabeled data, strong and weak pseu-
dolabels to train our student model, and a custom SpecAugment
procedure with event-dependent time masking to achieve a strong
event-based F1-score of 42.7%.

2. RELATED WORK

Recently, the use of deep learning models with convolutional neu-
ral network (CNN) [5, 10] and convolutional recurrent network net-
work (CRNN) [4] architectures have yielded the best performance
in AED tasks. More recently, custom solutions such as disentan-
gled features [11] and independent component [12] modules have
been added on top of CNN or CRNN architectures to further re-
fine performance. As strongly-labeled AED datasets are relatively
small, semi-supervised methods are used to take advantage of un-
labeled and weakly-labeled sets, either by only using weak predic-
tions [5, 13] or both strong and weak predictions [14, 4]. Knowl-
edge distillation [15] has been studied for AED using only weak la-
bels [16] or using weak and strong labels in two stages [17]. Mean-
teacher models [18] use a similar concept in applying a consistency
loss to student and teacher models with the same architecture.

The importance of different time scales of the present events
are evident in the post-processing steps of several systems for AED
[7, 19]. These improvements inspired us to mask the input fea-
tures and predictions based on the labeled classes. Masking of time
and frequency bands is used in SpecAugment [9], but most AED
systems only use time and frequency masking not time warping
[20, 21]. Partially masking the model outputs during gradient de-
scent have been used for AED [22] and for localization tasks [23].
Curriculum learning [24] is a strategy of gradually adding more dif-
ficult samples during training, and has been used to train ASR [8],
emotion recognition [25], and translation models [26]. Tonami et
al [27] studied curriculum for AED but ranked samples’ difficulty
based on the presence of labeled classes.

3. METHODOLOGY

The DCASE 2019 task 4 dataset consists of 10 different sound
events from domestic environments. The training dataset contains
synthetic clips strongly-labeled with onset and offset times, weakly-
labeled real recordings that contain event labels but no onset and
offset times, and a large unlabeled dataset of real recordings. The
validation and public test sets are both strongly-labeled datasets
with real recordings.
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3.1. Our model

Our student model S was designed to be a simple recurrent neural
network (RNN) model, achieving close to state-of-the-art perfor-
mance solely relying on data augmentation and knowledge distilla-
tion techniques without requiring hand-crafted features or custom
architectures. We provided as input X ∈ Rd×T log-mel features
with dimension d = 20 and time steps T = 500. Our model uses a
three-layer uni-directional LSTM architecture with h = 256 nodes
in each layer to produce an embedding g(X) = H ∈ Rh×T . To
generate the onset and offset times of each predicted event c in the
clip, we obtained a frame-level prediction f ∈ RC×T by passing
H through a fully-connected layer W with C output classes and a
sigmoid activation function.

We then used an attention-pooling mechanism to generate the
audio tagging predictions. For each class c, the attention weights
zc ∈ RT are obtained by:

zc =
exp(acH + bc)∑C

k=1 exp(akH + bk)
, (1)

where ak, bk ∈ Rh are the class weights and bias vectors for class
k. The clip level audio tagging outputs are obtained by normalizing
the frame outputs fc with the attention weights z. All frame pre-
dictions for events with a clip level prediction below the threshold
of 0.5 were set to zero so that only clips above the threshold also
had positive frame predictions.

3.2. Use of pseudolabels

We aim to understand the relative benefits of using pseudolabels,
and whether or not progressively incorporating easier or harder
samples yield better results. To that end, we used the teacher model
T from the top-performing submission in the DCASE 2019 task 4
challenge [5], which is an ensemble of six CNNs with an attention
pooling layer. The audio tagging and detection results from teacher
are generated for the unlabeled set without applying post-processing
steps, and used as targets for training the student model. After
the end of an epoch, the pseudolabeled samples can be evaluated
by the student model. At each generation of training, we deemed
samples whose student model predictions more closely match the
teacher model’s soft targets as easier samples. We used the fol-
lowing heuristic to score the difficulty of each sample X using the
weak predictions t, s ∈ RC of the teacher and student models, re-
spectively:

µ(t, s) = maxc(|tc − sc|), (2)

which is the maximum difference in the teacher and student scores
across all C classes. The maximum difference rather than mean is
chosen to ensure that the score discrepancies across all events are
below µ(t, s).

3.3. Customized SpecAug procedure

Although the standard SpecAug [9] procedure applies a fixed length
of time masking to each clip, the average duration of different sound
events vary greatly. For example, the duration of dishes clanging is
much shorter than that of vacuuming, so a model for vacuum sound
should be robust to longer time masks compared to a model for
dishes. Applying this principle, we devised a customized procedure
that varies the length of the time mask. For clips from the unlabeled
dataset, we used the weak soft targets generated by the teacher as
labels; otherwise we use the original labels. We added random noise

εc ∼ N(0, 1e− 6) for each event category to get noisy labels Ỹc =

Yc + ε. For the top K events in Ỹc, we apply a time mask to X
with the length given by γ · lc, where lc is the median frame length
of event c. We also masked frequency bands F times with fixed
length Lf in the same way as the standard SpecAug procedure. Our
tunable hyperparameters are F and Lf for frequency masking and
K and γ for time masking.

4. TRAINING

We applied the same procedure as that of the original teacher model
submission to produce 64-dimensional log-mel filterbank features.
A window length of 40 ms, hop length of 20 ms, and 2048 number
of fft components were used to produce 500 frames for each audio
clip. For the student model, we used 20-dimensional log-mel fil-
terbank features with the same window and hop lengths to produce
500 frames for each clip.

4.1. Loss function

Our dataset consists of: 1) a strongly-labeled synthetic dataset LS ;
2) a weakly-labeled dataset LW ; and 3) an unlabeled dataset U . For
each training sample X of the strongly-labeled synthetic dataset,
we have strong audio detection labels Y s, and inferred weak labels
Y w, where each class has Y w

c = maxt(Y
s
c,t), while the weakly-

labeled dataset only has weak labels Y w. For each sample in the
unlabeled dataset, we denote the teacher strong and weak predic-
tions by ts and tw, respectively, and the student strong and weak
predictions by ss and sw. During training, the loss function is com-
posed of the weak loss, strong loss, and unlabeled loss with hyper-
parameters λ1 and λ2 which are weights for the clip and frame level
losses:

J = Jw + Js(λ1, λ2,M) + Ju(λ1, λ2,M) (3)

where the weak loss Jw is the binary cross-entropy loss

Jw =
1

|Lw|
∑

X∈Lw

(Y w log(Ŷ w)+(1−Y w) log(1− Ŷ w)) (4)

and the strong loss is

Js =
λ1

|Ls|
∑

X∈Ls

(Y w log(Ŷ w) + (1− Y w) log(1− Ŷ w))

+
λ2

|Ls|
∑

X∈Ls

(Y s log(M� Ŷ s)+1−Y s) log(1−M� Ŷ s))

(5)

The loss Js for strongly-labeled samples is a weighted sum of the
clip-level and framewise binary cross-entropy losses. Since the la-
bels in the dataset are sparse, the average framewise loss can be
quite inefficient as the composition of the loss may be dominated
by the cross-entropy loss of negative frames. Thus, we compared
the results of three different types of masking: 1) no masking; 2)
event masking; and 3) segment masking.

In the case of no masking, M ∈ RC×T is simply a matrix
of ones. For event masking, we take the Hadamard product of the
predictions Ŷ s and the mask

Mij =

{
1, Yi = 1

0, Yi = 0
, (6)
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Experiment Curriculum Pseudolabels Masking SpecAug Best val F1 Best test F1 Mean±sd Mean±sd
val F1 test F1

Lin ICT 3 - - - - 45.3 42.7 - -
Lin ICT 2 - - - - 44.0 40.9 - -

EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
SW+EM+CS All Strong+weak Event Custom 41.3 42.5 40.3 ± 0.7 41.0 ± 1.1

HF+SW+EM+CS Harder Strong+weak Event Custom 40.7 42.2 40.3 ± 0.8 40.3± 1.2
SW+NM+NS All Strong+weak None None 34.1 34.7 33.1±0.7 33.5±0.9

Table 1: Comparison of pseudolabel scheduling (easier first, harder first, or adding all at once).

Experiment Curriculum Pseudolabels Masking SpecAug Best val F1 Best test F1 Mean±sd Mean±sd
val F1 test F1

EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
EF+SW+EM+SS Easier Strong+weak Event Standard 40.7 41.6 40.0± 0.4 40.9± 0.6
EF+SW+EM+NS Easier Strong+weak Event None 40.2 41.2 39.5 ± 0.4 39.9 ± 0.7
EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
EF+SW+SM+CS Easier Strong+weak Segment Custom 39.9 40.0 39.2± 0.4 39.1 ± 0.5
EF+SW+NM+CS Easier Strong+weak None Custom 35.7 34.5 33.9 ± 0.8 32.9 ± 0.8

Table 2: Comparison of data augmentation methods (custom SpecAug, standard SpecAug, and no augmentation) and different masking
schemes.

so that only frames of present events contribute to the framewise
loss. In the case of segment masking, we use the mask

Mij =

{
1, Yi+12 = 1 or Yi−12 = 1 or Yi = 1

0, otherwise
, (7)

that consists of 1’s for corresponding onset and offset frames of
each event with a 12-frame buffer before and after each segment
(0.24 seconds before and after the onset and offset, respectively).

4.2. Post-processing

After obtaining the framewise outputs for the detection task, we ap-
plied the same post-processing step as the procedure in the teacher
model. A median filter is applied to each event type, with a window
size 1/3 the median number of frames for each event type in the
synthetic labeled set.

5. RESULTS

We trained the following types of experiments:
1. Adding in all samples compared to adding easier or harder

samples of the pseudolabeled dataset first;
2. Applying no data augmentation compared to using standard

SpecAug and our custom SpecAug procedure;
3. Applying no masking, event masking, or segment masking

to the loss function;
4. Using only weak or weak and strong pseudolabels on the

unlabeled dataset.
Each experiment is trained with batch size 16 and learning rate

0.001 on an Adam optimizer with weights β1 = 0.9 and β2 = 0.99.
The macro event-based F1-score on the validation set is computed
at the end of each epoch, and the weights of the best epoch is saved.
As the number of training steps for the epochs of the experiments
for may differ, in experiment 1, we trained each trial for 48,790
training steps and verified that the validation metric has converged
for each experiment type.

5.1. Effect of adding pseudolabels in different stages

We compared the effect of adding all pseudolabels at once and
adding easier or harder samples of the pseudolabeled dataset first.
For all experiments, we trained in generations of five epochs each.
In the first generation, only the labeled dataset was added. For our
control group experiment, we addded all the pseudolabels; other-
wise, we evaluated the difficulty of each pseudolabel by generating
the scores as described in section 3.2. All the samples were ranked
in order of their scores, where higher scores mean that the sam-
ples are harder for the student model as the student predictions are
farther away from the teacher predictions. For the next two genera-
tions, the bottom 20% and bottom 40% scoring pseudolabel samples
were added to the training set when incorporating easier samples
first. We reversed this when incorporating harder samples first, i.e.
the top 20% and top 40% scoring pseudolabel samples are added
in generations two and three, respectively. Starting from the fourth
generation, all pseudolabels were added.

For hyperparamter tuning, we tested each experiment type
with multiple hyperparameter values for the loss weights λ1 ∈
{0.5, 0.75, 1, 1.5, 2} and λ2 ∈ {0.5, 0.75, 1, 1.5, 2}. After find-
ing the best hyperparameters for each experiment type, we repeated
the training process with different random initializations to obtain a
total of 10 different runs for each configuration.

The results are summarized in Table 1. We compared our re-
sults to the top submission in the challenge (Lin ICT 3) and the
top single model by the same team (Lin ICT 2). Four models are
compared: SW indicates that both strong and weak pseudolabels
were used, EM indicates event masking, and CS indicates custom
SpecAug procedure. The last experiment (SW+NM+NS) is a base-
line knowledge distillation result that does not add masking or aug-
mentation. All pseudolabels are added at once in SW+EM+CS,
whereas easier samples are added first in EF+SW+EM+CS, and
harder samples are added first in HF+SW+EM+CS. The results
show that the best performance is attained by adding easier sam-
ples first, with a best event-based macro F1 score of 42.7%, on par
with the best performing challenge submission. There is a mod-
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Experiment Curriculum Pseudolabels Masking SpecAug Best val F1 Best test F1 Mean±sd Mean±sd
val F1 test F1

EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
EF+W+EM+CS Easier Weak only Event Custom 28.4 28.6 26.0±1.0 25.6 ± 1.8

EM+CS N/A None Event Custom 23.4 24.7 21.0 ± 1.6 21.2± 2.0

Table 3: Validation and test F1 scores for using weak, strong, and no pseudolabels.

Comparison t-statistic Statistically significant at
α = 0.2 α = 0.05 α = 0.01

Easier first vs all 1.413 Y N N
Harder first vs all 0.143 N N N

Easier vs harder first 1.483 Y N N
Cust. SpecAug vs std. 2.802 Y Y N

Cust. SpecAug vs none 7.055 Y Y Y
Std. SpecAug vs none 2.989 Y Y Y
Event mask vs segment 6.800 Y Y Y
Segment mask vs none 19.875 Y Y Y

Event mask vs none 23.021 Y Y Y
Weak pseduolabels vs none 8.361 Y Y Y

Strong + weak vs weak 41.954 Y Y Y
Stong + weak vs none 36.011 Y Y Y

Table 4: Validation and test F1 scores for different pseudolabels.

est positive effect in adding easier samples first, but incorporating
harder samples first does not have much benefit.

5.2. Effect of custom SpecAug procedure

Our best performing model is achieved by applying a custom time-
masking SpecAug procedure randomly during training. We tried
different values for the hyperparameter governing the length of the
time masking γ ∈ 0.25, 0.5, 1.0. A final value of γ = 0.25 was
fixed as the best time masking length. In the standard SpecAug
experiment time masking was applied with fixed length of 16 time
frames. For both procedures, we fixed the probability of applying
SpecAug at p = 0.5 and apply 1 frequency mask of mask length 4
and 2 time masks. No time warping was applied in either procedure.

The effect of the SpecAug experiments are summarized in Ta-
ble 2. We compared the performance of the overall top performing
configuration (EF+SW+EM+CS, adding easier pseudolabels first)
with applying standard SpecAug (EF+SW+EM+SS) and no data
augmentation (EF+SW+EM+NS). CS, SS, and NS denote custom
SpecAug, standard SpecAug, and no SpecAug, respectively. All
other hyperparameters were kept fixed in the experiments, and each
experiment is repeated to get ten trials with random initialization.

5.3. Effect of masking on the loss function

Additionally, we compared the effect of adding a segment and event
masking matrix when computing the loss on strongly-labeled sam-
ples, as detailed in Eq 5. A comparison of ten trials for each mask-
ing type is shown in Table 2. The best results were achieved using
event masking (EM), where only positive events were included in
the calculation of the strong loss. Segment masking (SM) is notice-
ably worse than event masking but still performs much better than
no masking (NM), suggesting that masking helps the student model
learn which events are most important in the detection output, but
focusing only on positive segments is too aggressive compared to
simple event masking.

5.4. Effect of adding weak and strong pseudolabels

In our strongest model, both strong and weak predictions were used
as pseudolabels on the unlabeled samples. The results are sum-
marized in Table 3, where SW denotes adding both strong and
weak pseudolabels and W denotes only adding weak pseudola-
bels. While adding weak pseudolabels does significantly boost
the performance of the student model (EM+CS), the effect is
the largest when comparing adding both strong and weak pseu-
dolabels (EF+SW+EM+CS) with adding only weak pseudolabels
(EF+W+EM+CS).

6. CONCLUSION

We have demonstrated that several techniques can be used to train a
three-layer LSTM model on AED by using soft targets generated by
a strong teacher model. In particular, progressively applying pseu-
dolabeled samples, using variable-length time masking in SpecAug
augmentation, and applying event masking to the loss function all
contribute to a single model with a 42.7% macro event-based F1-
score on the test set, matching state of the art performance of 42.7%.
For each of the techniques, we perform a t-test on the means of the
validation F1 score of two independent samples to test the statisti-
cal significance, summarized in Table 4. We find that adding easier
samples first in the pseudolabeled dataset is statistically significant
at the α = 0.2 level, while the other techniques are significant at
the α = 0.05 level.

These techniques can be applied to AED models outside the
teacher-student training context and can be further studied in more
detail. Adding pseudolabeled data in different generations can help
models learn more difficult samples over time. Further research
can fine-tune these techniques in making the task harder in later
generations. For example, adjusting time-masking techniques for
data augmentation can be helpful for tasks with events of different
average time-scales.
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