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ABSTRACT

In this paper we present our system for the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) 2021 Challenge
Task 4: Sound Event Detection and Separation in Domestic Envi-
ronments, where it scored the fourth rank. Our presented solution
is an advancement of our system used in the previous edition of
the task.We use a forward-backward convolutional recurrent neu-
ral network (FBCRNN) for tagging and pseudo labeling followed
by tag-conditioned sound event detection (SED) models which are
trained using strong pseudo labels provided by the FBCRNN. Our
advancement over our earlier model is threefold. First, we intro-
duce a strong label loss in the objective of the FBCRNN to take
advantage of the strongly labeled synthetic data during training.
Second, we perform multiple iterations of self-training for both the
FBCRNN and tag-conditioned SED models. Third, while we used
only tag-conditioned CNNs as our SED model in the previous edi-
tion we here explore sophisticated tag-conditioned SED model ar-
chitectures, namely, bidirectional CRNNs and bidirectional convo-
lutional transformer neural networks (CTNNs), and combine them.
With metric and class specific tuning of median filter lengths for
post-processing, our final SED model, consisting of 6 submod-
els (2 of each architecture), achieves on the public evaluation set
poly-phonic sound event detection scores (PSDS) of 0.455 for sce-
nario 1 and 0.684 for scenario 2 as well as a collar-based F-
score of 0.596 outperforming the baselines and our model from
the previous edition by far. Source code is publicly available at
https://github.com/fgnt/pb_sed.

Index Terms— sound event detection, audio tagging, weak la-
bels, self-training

1. INTRODUCTION

Automatic Detection and Classification of Acoustic Scenes and
Events (DCASE) has huge potential for various applications such
as smart homes, multimedia search and environmental monitoring,
to name a few. Due to the high diversity and variability of sounds,
however, it is a challenging problem. Driven by the increasing in-
terest from academia and industry and the success of data-driven
approaches, the state-of-the-art in DCASE has recently progressed
rapidly. The annual DCASE Challenges [1] further push and evalu-
ate the current state-of-the-art in multiple sub-disciplines.

In this contribution we are concerned with the recognition of
individual sound events. Here, sound event detection (SED) is the
task of recognizing and temporally localizing sound events in an
audio clip, whereas audio tagging aims to only recognize their pres-
ence within an audio clip without its temporal localization [2].
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One particular challenge in SED is that large-scale sound
databases, such as Google’s Audio Set [3], usually only provide
tags a.k.a. weak labels, which only indicate the presence or ab-
sence of sound events within an audio clip without the information
about the temporal location. Several approaches have been pro-
posed for learning to localize sound events from weakly labeled
data [4, 5, 6, 7], most of which use some sort of multiple instance
learning (MIL) pooling function [8]. Another topic of interest, not
only for sound recognition, is semi-supervised learning, which aims
to exploit unlabeled data in addition to labeled data to improve per-
formance. Here, approaches are usually based on representation
learning [9], pre-training [10], teacher-student learning [11, 12] or
self-training [13]. Self-training initially trains models on the avail-
able labeled data followed by iterative pseudo labeling [14] of the
unlabeled data and retraining on labeled and pseudo labeled data.

For several years now, the Task 4 of the DCASE Challenge
[15, 16, 17] tackles both of above challenges. Recently, it also
explores the benefit of strongly labeled synthetic data in addition
to weakly labeled and unlabeled real data. For this, the Domestic
Environment Sound Event Detection (DESED) data set [16] with
10 different target sound events from a domestic environment has
been designed. It is composed of 10-sec audio clips and comprises
1578 weakly labeled and 14412 unlabeled real training clips as well
as isolated sound events and backgrounds for synthetic soundscape
generation. Further, 1168 and 692 strongly labeled real audio clips
are provided for validation and public evaluation, respectively.

In this paper we present our solution for the most recent DCASE
2021 Challenge Task 4: Sound Event Detection and Separation
in Domestic Environments. Here, we built on our previously pro-
posed forward-backward convolutional recurrent neural network
(FBCRNN) and tag-conditioned SED [18], and propose three mea-
sures to improve performance. First, we introduce an explicit strong
label loss in the FBCRNN training to exploit the strong labels
from the synthetic data. Second, we perform more extensive self-
training. Third, we explore more sophisticated CRNNs and convo-
lutional transformer neural networks (CTNNs) for tag-conditioned
SED in addition to the previously used CNN architecture. We show
that all three measures improve performance, allowing us to signif-
icantly outperform the baseline and, to the best of our knowledge,
set a new state-of-the-art in terms of collar-based F-score on the
public evaluation set.

The rest of the paper is structured as follows. In Sec. 2 we re-
cap the FBCRNN, introduce the strong label loss and outline the
proposed FBCRNN self-training. In Sec. 3 we discuss architectures
and self-training for the tag-conditioned SED. Sec. 4 presents im-
plementation details w.r.t. data preparation, training and post pro-
cessing. Finally, results are presented in Sec. 5 after which we draw
conclusions in Sec. 6.
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Figure 1: FBCRNN

2. FORWARD-BACKWARD CRNN

The FBCRNN [18] is illustrated in Fig. 1. It consists of a
shared CNN front-end and two separate recurrent classifier net-
works (RNN-+fully connected neural network (FCN)) with one pro-
cessing the audio in forward direction and the other in backward di-
rection. Note that unlike a bidirectional RNN the two classifiers do
not exchange hidden representations and, therefore, at each frame
one classifier has only seen previous frames and the other only sub-
sequent frames.

To encourage the model to output tag predictions as soon as it
has seen the event in the input when training with clip-level (weak)
labels, we compute, at each frame, the binary cross entropy (BCE)
loss between the point-wise maximum of the predictions of the two
classifiers and the weak label. Fig. 2 shows an example, where the
weak target and prediction signals are shown purple in the first and
fourth subplots, respectively, assuming some decent forward and
backward predictions shown in the third subplot. Note, that the
FBCRNN training scheme can be seen as MIL with two instances.
One instance comprises the current plus all previous frames, which
has been processed by the forward classifier, and the other instance
comprises the current plus all subsequent frames, which has been
processed by the backward classifier. Hence, if an event is labeled
positive in the clip at least one of the classifiers has to be able to
classify the event as positive, given that the event is either present
in previous or in subsequent frames or both.

At test-time a clip-level prediction is obtained by averaging the
final forward and the final backward predictions of all models in
an ensemble. As the proposed training scheme forces the forward
and backward classifiers to output predictions without having pro-
cessed the whole audio, the FBCRNN generalizes to much shorter
segments at test-time. This enables FBCRNN-based SED, where
FBCRNNS are applied to small contexts of, say, a couple of 100 ms
around each frame to obtain frame-wise SED scores.

We use the same architecture as in [18], where, however, we
removed the last pooling layer between the Conv2d and Convld
blocks.
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Figure 2: FBCRNN signals

2.1. Strong Label Loss

As the training data of the challenge contains synthetic data which
comes with strong labels, it is desirable to make use of the strong
labels in the FBCRNN training, which we previously did not do.
If strong labels are given, we now, instead of the weak label loss,
compute a strong label BCE for both classifiers with respect to the
desired outputs, which are illustrated exemplarily in the second sub-
plot of Fig. 2, and average the forward and backward loss terms.

2.2. Self-Training

As a large fraction of the provided data is unlabeled, we now per-
form more extensive self-training with training 8 initial FBCRNNs
on only weakly labeled real and strongly labeled synthetic data
followed by three iterations of pseudo labeling and retraining 4
FBCRNN models in each iteration.

In each iteration we generate weak pseudo labels for the com-
plete unlabeled data, where tagging thresholds are tuned on the val-
idation set to maximize the Fi-score. Additionally, we perform a
boundary detection for weakly labeled and unlabeled data by fil-
tering the point-wise minimum of the two classifier signals with
[-2/N -2/N  2/N 2/N] where N is the filter
size. Exemplary point-wise minimum and subsequent boundary de-
tection are depicted in the two last subplots of Fig. 2. The class-
specific filter sizes and thresholds that the output or negative output
has to exceed to detect an onset or offset boundary, respectively, are
tuned on the validation data such that a minimum collar-based pre-
cision of 75 % is achieved, when using collars of 500 ms. For those
events where onset and offset can be detected, the strong label loss
from Sec. 2.1 is used in the following FBCRNN retraining.

Finally, we use both the FBCRNN ensemble after the second
and third iteration to separately perform strong pseudo labeling of
the real data (weakly labeled and unlabeled) giving us a set of strong
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pseudo labels for each of the ensembles, i.e. two in total. For the
FBCRNN-based SED, class specific context lengths, median filter
lengths and detection thresholds are tuned on the validation set to
maximize the frame-based F'-score. The obtained strong pseudo
labels allow us to train SED systems in a strongly supervised man-
ner as described in the following.

3. TAG-CONDITIONED SED

As in the previous edition, our SED model uses tag-
conditioning [18], which means we also input the predicted
tags from a FBCRNN (ensemble) in addition to the audio input fea-
tures. While in the previous edition we only used a tag-conditioned
CNN, we now also train a tag-conditioned bidirectional CRNN and
tag-conditioned bidirectional CTNN.

Here, we use similar architectures as in the FBCRNN with,
however, only one classifier back-end. For the pure CNN the
CNN1d and RNN Blocks are removed. In the bidirectional CRNN,
a bidirectional RNN is employed instead of unidirectional RNNs
as in the FBCRNN. For the CTNN a Transformer Encoder [19] is
used instead of an RNN, where we use 3 Transformer blocks each
with 10 heads and 32-dimensional embeddings in each head. Also
a positional encoding is added at the Transformer input.

Tag-conditioning is performed by concatenating a 10-
dimensional multi-hot encoding of the tags with the inputs of the
CNN2d, CNN1d, RNN/Tranformer, and FCN Blocks. For the
CNN1d, RNN and FCN the encoding is concatenated along feature
dimension at each frame. For the CNN2d the encoding is concate-
nated along channel dimension at each time-frequency bin.

The models are trained with standard strong label BCE loss. For
each set of the 2 strong pseudo label sets we train each of the model
architectures giving us 3 models for each of the 2 strong pseudo
label sets. For each of the strong pseudo label sets, we perform one
iteration of self-training, i.e., generating new strong pseudo labels
using the 3 models of that particular set followed by retraining the 3
architectures. Finally, we combine all the models from the two sets
of pseudo labels into our final ensemble, i.e., 6 models in total.

4. IMPLEMENTATION DETAILS

4.1. Data Preparation/Augmentation

Initially, waveforms are resampled to 16kHz and normalized
z(t) = s(t)/max(]s(t)]) to be within the range of -1 and 1. As
our system’s input we then extract a M =128-dimensional log-
mel spectrogram using a short-time Fourier transform (STFT) with
frame-length of 60 ms and hop-size of 20 ms. Each mel-bin is glob-
ally normalized to zero mean and unit variance.

At training time we perform various on-the-fly data augmenta-
tions, which is similar to what we already used previously [20, 18]
and is described in the following.

Scaling: We randomly scale the waveform with a scale weight
sampled out of a Log Truncated Standard Normal distribution with
truncation at log(3).

Shifted superposition: We randomly superpose two audios as
xi(t) = z;(t) + z;(t — 7) with a random shift 7 sampled uni-
formly such that the superposed signal is not longer than 15s, i.e.,
if we, e.g., superpose 2 signals each having a length of 10s, the
shift is uniformly sampled between -5s and 5s. Labels are super-
posed accordingly and clipped at 1 to retain binary labels. We ap-
ply superposition with a probability of 2/3. Due to the similarity
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to mixup [21], we previously referred to this augmentation also as
mixup. However, as we do not interpolate the signals, calling it
superposition is more accurate.

Frequency warping: We randomly warp the center frequen-
cies of the mel filter bank similar to vocal tract length perturbation
(VTLP) [22]. The boundary frequency is sampled from a Truncated
Exponential distribution with ¢ = M/2 and truncation at 5 - M.
The warping factor is sampled from a Log Truncated Normal dis-
tribution with u = 0, o = 0.8 and truncation at log(1.3) = 0.26.
Note that the boundary frequency can fall above M, in which case
the whole spectrogram is stretched or squeezed and filled with ze-
10S.

Frequency-/Time-Masking: As in SpecAugment [23], we ap-
ply one time- and one frequency mask for each input with random
locations and widths. The locations are uniformly sampled along
the time- and frequency axes, respectively. Widths are uniformly
sampled between 0 and min(1.4s, 0.27") for the time mask, where
T is the length of the audio, or between 0 and 20 bins for the fre-
quency mask.

Gaussian Noise: We add Gaussian noise to the final feature
map with its standard deviation being uniformly sampled between
0 and 0.2.

Note, that in contrast to [18], we here neither perform blurring
nor reverberation of events in the synthetic data, since it has proven
to be not effective.

4.2. Training

Training is performed for 40 k update steps with a batch size of
16. To balance the different data sets we repeat certain data sets in
one epoch multiple times. Here, one epoch consists of 20 times the
weakly labeled data, two times pseudo labeled unlabeled data (if
used), one time the provided synthetic data from this edition (syn-
thetic21) and two times the provided synthetic data from previous
edition (synthetic20). This sums up to ~ 31 k+28 k+10k+5 k au-
dio clips in one epoch. We further ensure that each batch includes at
least 6 clips from the weakly labeled data, 2 clips from synthetic21
and 1 clip from synthetic20 as well as at least 1 example of each
event class. We employ Adam [24] for optimization with a learning
rate of 5 - 1074, with a ramp up during the first 1k update steps
and a reduction to 10™* after 20k update steps. We perform vali-
dation every 1k update steps and choose the checkpoint with best
validation performance in terms of (frame-based) F-score as the
final model.

4.3. Post-Processing

At test-time we use median filtering and a non-linear score transfor-
mation for post-processing.

Median filter sizes are tuned for each event class and for each
evaluation metric separately to give best performance on the valida-
tion set.

The class-specific non-linear score transformation serves the
purpose of getting a smooth poly-phonic sound event detection
scores (PSDS)-ROC [25] with linearly spaced detection thresholds.
It transforms the prediction scores such that in the validation set
prediction scores from positively labeled frames are uniformly dis-
tributed between 0 and 1. Note that the non-linear score transforma-
tion followed by linearly spaced detection thresholds is equivalent
to non-linearly spaced detection thresholds.
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Table 1: Single model FBCRNN performance on eval-public in %.
Bold values indicate best performance in a column. Underlines in-
dicate significant improvements within a block.

PSDSI PSDS2 FlM*)  pltee)
0 31.6406 67.3+1.7 44.1+1.1 83.84+08
w/o sll {29.0+2.1 67.243.0 41.24+1.9 83.3+0.6
1 36.4405 68.0+1.0 49.1+1.4 84.6+03
w/o psll |33.240.7 68.9+1.3 47.4+0.6 85.140.7
2 38.2+09 68.9+1.3 50.9+1.0 85.1+04
3 37.94+1.4 70.24+1.2 50.7+1.2 85.640.6

Iteration

Table 2: Single model tag-conditioned SED performance on eval-
public in %. Bold values indicate best performance in the iteration.

Iteration Model | PSDS1 PSDS2 Fl(collar)

0 CNN |38.2+2.7 64.4404 54.4+0.1
CRNN |39.740.8 66.7+0.8 54.540.1
CTNN [40.9+1.5 66.240.6 55.7+0.5

1 CNN |39.6+1.2 64.34+0.6 54.4+03

CRNN
CTNN

39.8+0.6 67.0+£1.0 56.6+0.1
40.84+1.6 66.34+0.4 56.5+0.6

5. RESULTS

We report results on the public evaluation set (eval-public), also re-
ferred to as Youtube evaluation [16, 26], as well as official challenge
results' (eval-2021). Performance is measured in terms of

e PSDS1/PSDS2: PSDSs [25] with two different sets of param-
eters as used in the challenge®

Fl(couar): macro-average collar-based Fi-score [27] with a

200 ms collar on onsets and a 200 ms / 20% of the event length
collar on offsets

. Fl(mg): macro-average audio tagging I -score

For Fi-scores, which evaluate a single operating point, class-
specific detection thresholds are tuned to give best performance on
the validation set. Note that PSDS1 and F\“"*") have a focus on
accurate temporal localization of sound events, while PSDS2 and
Fl(tag) focus on the recognition of active classes.

For FBCRNN-based SED evaluation, context lengths are tuned
along with the post-processing hyper parameters for each event
class and for each SED evaluation metric separately to give best per-
formance on the validation set. Table 1 presents the single model
FBCRNN performance on eval-public over the iterations of the pro-
posed self-training. For reference, we further report in iteration 0
the performance without the strong label loss (sll), as described in
Sec. 2.1, and in iteration 1 the performance when not pseudo label-
ing boundaries in the real data, as described in Sec. 2.2, i.e., with-
out a pseudo strong label loss (psll) on some real data. In each line
we report the means and standard deviations over 4 independently
trained models.

It can be observed that all metrics improve with the first two
iterations of self-training. In the third iteration only PSDS2 and
F**&) improve further, whereas PSDS1 and F\°*"™") decrease in-
significantly. Further, the proposed strong label loss (sll) and the
pseudo strong label loss (psll), in iterations O and 1, respectively,

]http://dcase.community/challenge202l/taskfsoundfeventfdetecti
on-and-separation-in-domestic-environments-results

2http://dcase.communlty/challengeZOZl/taskfsoundfeventfdetectl

on-and-separation-in-domestic-environments
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Table 3: Ensemble results on eval-public and eval-2021 in %. Bold
values indicate best performance.

eval-public eval-2021
Model ~ |PSDS1 PSDS2 F(°°"*")|pSDS1 PSDS2 F, "™
Bascline [12]] 359 59.6 408 | 315 547 373
Winner [28] | 51.7 77.8 574 | 452 746 523
FBCRNN | 406 707 524 - - -
TCSED | 455 684 59.6 | 41.6 637 567

allow to significantly improve PSDS1 and F’ fconar) demonstrating
their benefit for the temporal localization of sounds.

Next, we evaluate the tag-conditioned SED (TCSED) models.
Recap from Sec. 3 that we train each of the tag-conditioned archi-
tectures (CNN,CRNN,CTNN) on each of the strong pseudo label
sets obtained from the FBCRNNSs from iterations 2 and 3, followed
by one iteration of self-training within each label set separately. In
Table 2 we report the means and standard deviations of the results
on eval-public over the two label sets.

When comparing performances between iterations 0 and 1, one
can see that only for F°*"® a significant improvement can be
achieved in iteration 1. When comparing results for the different
model architectures, it can be observed that tag-conditioned CRNNs
and CTNNs perform more or less similar and outperform the tag-
conditioned CNNs.

Finally, we report ensemble results in Table 3. Our final
FBCRNN ensemble consists of 8 FBCRNNs from after the sec-
ond and third iterations of the FBCRNN self-training (Table 1).
Our TCSED ensemble, which was submitted to the challenge, con-
sists of the 6 models after the single TCSED self-training iteration
(Table 2). Both ensembles significantly outperform the challenge
baseline w.r.t. all metrics. While the TCSED ensemble signifi-
cantly outperforms the FBCRNN in PSDS1 and F °°"®_ which
both measure temporal localization of sound events, the FBCRNN
achieves better results for PSDS2 which primarily measures recog-
nition performance. Here, the FBCRNN-based SED benefits from
the tuning of the context lengths, where large contexts are beneficial
for PSDS2 evaluation. Compared to the winning system, our sys-
tem, is outperformed in terms of PSDS1 and PSDS2. However, our
TCSED ensemble achieves the highest F°°"*") of the challenge’

and, to the best of our knowledge, the highest so far published

F°") on the eval-public set.

6. CONCLUSIONS

In this paper we presented our system for the DCASE 2021 Chal-
lenge Task 4: Sound Event Detection and Separation in Domes-
tic Environments, where it scored the fourth rank. Starting from
FBCRNNS followed by tag-conditioned SEDs, which we proposed
in the previous challenge edition, we here presented three measures
which significantly improve SED performance. First, we introduced
a strong label loss in the FBCRNN training to leverage strong an-
notations, which is shown to improve temporal sound localization.
Then, we performed extensive self-training in both FBCRNN train-
ing and tag-conditioned SED training, which particularly improves
FBCRNN-based audio tagging and SED performance. Finally, we
explored CRNN and CTNN architectures for tag-conditioned SEDs,
in addition to CNNs used previously, which gives another perfor-
mance gain. The proposed measures allow us to set a new, to the
best of our knowledge, state-of-the-art in terms of collar-based F7 -
score on the public evaluation set of the DESED data set.
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