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ABSTRACT

We present the task description and discussion on the results of
the DCASE 2021 Challenge Task 2. In 2020, we organized an
unsupervised anomalous sound detection (ASD) task, identifying
whether a given sound was normal or anomalous without anoma-
lous training data. In 2021, we organized an advanced unsuper-
vised ASD task under domain-shift conditions, which focuses on
the inevitable problem of the practical use of ASD systems. The
main challenge of this task is to detect unknown anomalous sounds
where the acoustic characteristics of the training and testing sam-
ples are different, i.e., domain-shifted. This problem frequently
occurs due to changes in seasons, manufactured products, and/or
environmental noise. We received 75 submissions from 26 teams,
and several novel approaches have been developed in this challenge.
On the basis of the analysis of the evaluation results, we found that
there are two types of remarkable approaches that TOP-5 winning
teams adopted: 1) ensemble approaches of “outlier exposure” (OE)-
based detectors and “inlier modeling” (IM)-based detectors and 2)
approaches based on IM-based detection for features learned in a
machine-identification task.

Index Terms— anomaly detection, dataset, acoustic condition
monitoring, domain shift, DCASE Challenge

1. INTRODUCTION

Anomalous sound detection (ASD) [1–7] is the task of identifying
whether the sound emitted from a machine is normal or anomalous.
Automatic detection of mechanical failure is an essential technol-
ogy in the fourth industrial revolution, which includes artificial in-
telligence (AI)–based factory automation, and also prompt detec-
tion of machine anomalies by observing its sounds may be useful
for machine condition monitoring.

We organized “unsupervised ASD” as Task 2 of the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2020 Challenge [8] for to connect academic tasks and real-world
problems. The main challenge of this task was to detect unknown
anomalous sounds under the condition that only normal sound sam-
ples have been provided as training data [1–7]. In real-world fac-
tories, actual anomalous sounds rarely occur but are highly diverse.
Therefore, exhaustive patterns of anomalous sounds are impossible
to collect. This means that we must detect unknown anomalous
sounds that were not in the given training data. This unique and

real-world oriented task attracted the interest of many participants,
and resulted in 117 entries from 40 teams, which included several
new approaches [9–12].

For the DCASE 2021 Challenge, we organized a follow-up un-
supervised ASD task under domain-shift conditions, which simu-
lates a more challenging issue in real-world applications. The main
challenge of this task is that the acoustic characteristics of the train-
ing and testing phase are different due to changes in the normal
condition such as motor speed and signal-to-noise ratio (SNR). A
frequent real-world example of this problem is that the motor speed
in a conveyor for transporting products varies in response to prod-
uct demand; for a product whose demand changes with the seasons,
training data recorded in the summer was 300–400 rotations per
minute (RPM) (i.e. source domain), but the demand drops in the
winter resulting in the motor speed decreasing to 100–200 RPM
(i.e, target domain). Because a normal motor sound at 100 RPM is
an unknown sound for the ASD system, it could incorrectly be de-
tected as an anomalous sound. Therefore, methods to deal with such
drift in normal conditions are required to accelerate the real-world
application of ASD.

As the first benchmark task for domain-shift problems in ASD,
we designed the DCASE Challenge 2021 Task 2 “Unsupervised
Detection of Anomalous Sounds for Machine Condition Monitor-
ing under Domain-Shifted Conditions.” The scope includes differ-
ences in operating speed, machine load, environmental noise, and
so on. After briefly introducing this task, we discuss remarkable
approaches and their potential problems on the basis of the analysis
of all 75 submissions from 26 teams.

2. UNSUPERVISED ANOMALOUS SOUND DETECTION
UNDER DOMAIN-SHIFTED CONDITIONS

Let the L-sample time-domain observation x ∈ RL be an audio
clip that includes a sound emitted from a machine. ASD is the de-
termination of whether a machine is in a normal or anomalous state
from x. To determine the state of the machine, an anomaly score
is calculated; it takes a large value when the machine is anomalous,
and vice versa. To calculate the anomaly score, we have to prepare
an anomaly score calculator A with parameter θ. The input of A
is the audio clip x and additional information given by its file path,
and one anomaly score Aθ(x) is output. Then, the machine is de-
termined to be anomalous when the anomaly score Aθ(x) exceeds
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a pre-defined threshold value φ as

Decision =

{
Anomaly (Aθ(x) > φ)
Normal (otherwise).

(1)

The primal difficulty in this task is to trainA so thatAθ(x) becomes
a large value when the machine is anomalous, even though only
normal sounds are available as training data.

In addition to the regular unsupervised ASD, we have to solve
the domain-shift problem in real-world cases. As mentioned in
Section 1, domain shifts refer to the difference in conditions be-
tween training and testing phases. The conditions differ in operating
speed, machine load, viscosity, heating temperature, environmental
noise, SNR, etc. The difference in conditions causes a gap in the
sound characteristics, i.e., the distribution of the observation in the
feature space changes. Here, two conditions are defined: source do-
main and target domain. The source domain refers to the original
condition with a sufficient number of training clips, and the target
domain refers to another state that has changed from the source do-
main. Let DS , DT , and DTA be the distributions of x under the
normal condition in the source domain, the normal condition in the
target domain, and the anomalous condition in the target domain,
respectively. The regular unsupervised ASD task is to determine
whether x was generated from DT or DTA under the condition
that clips from DT (= DS) are available as training data, but clips
from DTA are not. On the other hand, in the domain shift scenario,
detection must be performed under the condition that clips from
DT ( 6= DS) are available as training data, but clips from DTA are
not. Note that only a few clips from DT are provided as training
data in 2021’s task setting.

3. TASK SETUP

3.1. Dataset

The data used for this task comprises parts of the ToyADMOS2 [13]
and MIMII DUE [14] datasets consisting of the normal/anomalous
operating sounds of seven types of toy/real machines. We intention-
ally damaged machines to collect the anomalous sounds in these
datasets. We provide the following types of machines: ToyCar
and ToyTrain from ToyADMOS2, and fan, gearbox, pump, slide
rail, and valve from MIMII DUE. To simplify the task, we use
only the first channel of multichannel recordings; all recordings
can be regarded as the single-channel recordings of a fixed micro-
phone. Each recording is 10-sec-long audio that includes both the
machine’s operating sound and environmental noise. The sampling
rate of all signals is 16 kHz. We mixed machine sounds with en-
vironmental noise, and only noisy recordings are available as train-
ing/test data. The environmental noise samples were recorded in
several real factory environments. For the details of the record-
ing procedure, please refer to the papers on ToyADMOS2 [13] and
MIMII DUE [14].

In this task, we define two important terms: machine type and
section.

Machine type refers to the type of machine, which can be one of
seven in this task: fan, gearbox, pump, slide rail, ToyCar, ToyTrain,
and valve.

Section is defined as a subset of the data within one machine type
and consists of data from the source and target domains. A section
is a unit for calculating performance metrics and is almost identi-
cal to “machine ID” in the 2020 version. In the 2020 version, there

was a one-to-one correspondence between machine IDs and prod-
ucts, but in the 2021 version, machines of the same product appear
in different sections (Sections 00–02 of the gearbox are the same
product, and sections 03–04 of the gearbox are the same product.),
and multiple products appear in the same section (Section 01 of the
fan contains two products [14]).

We provide three datasets: development dataset, additional
training dataset, and evaluation dataset.
Development dataset consists of three sections for each machine
type (Sections 00, 01, and 02), and each section is a complete set
of training and test data. For each section, this dataset provides (i)
around 1,000 clips of normal sounds in a source domain for training,
(ii) only three clips of normal sounds in a target domain for training,
(iii) around 100 clips of both normal and anomalous sounds in the
source domain for the test, and (iv) around 100 clips each of normal
and anomalous sounds in the target domain for the test.

Additional training dataset provides the other three sections for
each machine type (Sections 03, 04, and 05). Each section consists
of (i) around 1,000 clips of normal sounds in a source domain for
training and (ii) only three clips of normal sounds in a target domain
for training.

Evaluation dataset provides test clips for the three sections (Sec-
tions 03, 04, and 05) identical to those in the additional training
dataset. Each section consists of (i) test clips in the source domain
and (ii) test clips in the target domain, none of which have a con-
dition label (i.e., normal or anomaly). Note that the sections of the
evaluation dataset (Sections 03, 04, and 05) are different from the
development dataset (Sections 00, 01, and 02).

3.2. Evaluation metrics

The area under the curve (AUC) and partial-AUC (pAUC) for re-
ceiver operating characteristic (ROC) curves are used for evaluation
as well as the 2020 edition [8]. The pAUC is an AUC calculated
from a portion of the ROC curve over the pre-specified range of in-
terest. In our metric, the pAUC is calculated as the AUC over a low
false-positive-rate (FPR) range [0, p]. The AUC and pAUC for each
machine type, section, and domain are defined as

AUCm,n,d =
1

N−N+

N−∑
i=1

N+∑
j=1

H(Bθ,j,i), (2)

pAUCm,n,d =
1

bpN−cN+

bpN−c∑
i=1

N+∑
j=1

H(Bθ,j,i), (3)

where Bθ,j,i = Aθ(x+j ) − Aθ(x−i ), m represents the index
of a machine type, n represents the index of a section, d =
{source, target} represents a domain, b·c is the flooring function,
and H(x) returns 1 when x > 0 and 0 otherwise. {x−i }

N−
i=1 and

{x+j }
N+

j=1 are normal and anomalous test clips in domain d in sec-
tion n in machine type m, respectively, and they have been sorted
so that their anomaly scores are in descending order. N− and N+

are the number of normal and anomalous test clips in domain d in
section n in machine type m, respectively. The additional use of
the pAUC is based on practical requirements. If an ASD system
frequently gives false alarms, we cannot trust it. Therefore, it is im-
portant to increase the true-positive rate under low FPR conditions.
In this task, we will use p = 0.1. The official score Ω for each sub-
mitted system is given by the harmonic mean of the AUC and pAUC
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scores over all machine types, all sections, and both domains. As
the aforementioned equations show, a threshold value does not need
to be determined to calculate AUC, pAUC, or the official score be-
cause the threshold value is set to the anomaly score of a normal
test clip.

3.3. Baseline systems and results

The task organizers provided two baseline systems.

Autoencoder-based baseline: The first baseline is an autoencoder
(AE)-based anomaly score calculator and the same as the DCASE
2020 task 2. Details are described in the 2020 task description [8].
The anomaly score Aθ is calculated as the mean square error of
reconstruction for the observed sound. To obtain small anomaly
scores for normal sounds, the AE is trained to minimize the recon-
struction error of the normal training data. This method is based on
the assumption that the AE cannot reconstruct sounds that are not
used in training, that is, unknown anomalous sounds. If and only if
Aθ for each test clip is greater than a threshold, the clip is judged to
be anomalous.

“Outlier exposure”-based baseline using MobileNetV2: The sec-
ond baseline is an anomaly score calculator obtained by using
an approach called “outlier exposure” (OE) [15] for the machine-
identification task. In DCASE 2020, 10 of the 40 teams used this
approach [9, 11, 12, 16–22], and with four of them [9, 16, 19, 20]
using the model of MobileNetV2 [23]. The models of this base-
line are trained to identify from which section the observed sig-
nal was generated; it outputs the softmax value that is the pre-
dicted probability for each section. The anomaly score is calcu-
lated as the averaged negative logit of the predicted probabilities
for the correct section. We first calculate the log-mel-spectrogram
of the input X = {Xt}Tt=1, where Xt ∈ RF , and F and T
are the number of mel-filters and time-frames, respectively. Then,
the acoustic feature (two-dimensional image) at t is obtained by
concatenating consecutive frames of the log-mel-spectrogram as
ψt = (Xt, · · · , Xt+P−1) ∈ RP×F . By shifting the context win-
dow by L frames, B(= bT−P

L
c) images are extracted. The frame

size of the short-time Fourier transform (STFT) is 64 ms, and the
hop size is 50 %. In addition, F = 128, P = 64, and L = 8. The
Adam optimizer is used, and we fix the learning rate to 0.00001. We
stop the training process after 20 epochs, and the batch size is 32.
We train models independently for each machine type using nor-
mal clips from all sections of that machine type. The sections are
used as classes to train the individual models. The anomaly score is
calculated as:

Aθ(X) =
1

B

B∑
b=1

log

(
1− pθ(ψt(b))
pθ(ψt(b))

)
, (4)

where t(b) is the beginning frame index of the b-th image and pθ is
the softmax output by MobileNetV2 for the correct section.

Tables 1 and 2 show the AUC and pAUC scores for the two
baselines, respectively. Because the results produced with a GPU
are generally non-deterministic, the average and standard deviations
from these five independent trials (training and testing) are shown.

Table 1: Results of the AE-based baseline

Section AUC [%] pAUC [%]
Source Target Source Target

ToyCar
00 67.63 ± 1.21 54.50 ± 0.89 51.87 ± 0.50 50.52 ± 0.20
01 61.97 ± 1.50 64.12 ± 1.07 51.82 ± 0.87 52.14 ± 0.80
02 74.36 ± 0.82 56.57 ± 1.53 55.56 ± 0.83 52.61 ± 1.20

ToyTrain
00 72.67 ± 1.19 56.07 ± 0.80 69.38 ± 1.06 50.62 ± 0.68
01 72.65 ± 0.32 51.13 ± 0.53 62.52 ± 0.88 48.60 ± 0.13
02 69.91 ± 0.33 55.57 ± 1.07 47.48 ± 0.02 50.79 ± 0.93

Fan
00 66.69 ± 0.81 69.70 ± 0.32 57.08 ± 0.15 55.13 ± 0.34
01 67.43 ± 1.12 49.99 ± 0.48 50.72 ± 0.42 48.49 ± 0.38
02 64.21 ± 1.27 66.19 ± 1.23 53.12 ± 0.78 56.93 ± 1.37

Gearbox
00 56.03 ± 0.53 74.29 ± 0.51 51.59 ± 0.16 55.67 ± 0.97
01 72.77 ± 0.72 72.12 ± 1.06 52.30 ± 0.18 51.78 ± 0.15
02 58.96 ± 0.53 66.41 ± 0.72 51.82 ± 0.29 53.66 ± 0.57

Pump
00 67.48 ± 0.58 58.01 ± 0.57 61.83 ± 0.41 51.53 ± 0.27
01 82.38 ± 0.27 47.35 ± 0.53 58.29 ± 0.77 49.65 ± 1.46
02 63.93 ± 0.45 62.78 ± 0.70 55.44 ± 0.52 51.67 ± 0.35

Slide rail
00 74.09 ± 0.48 67.22 ± 0.45 52.45 ± 0.63 57.32 ± 0.52
01 82.16 ± 0.35 66.94 ± 0.39 60.29 ± 0.30 53.08 ± 0.39
02 78.34 ± 0.16 46.20 ± 0.77 65.16 ± 0.55 50.10 ± 0.31

Valve
00 50.34 ± 0.27 47.12 ± 0.18 50.82 ± 0.16 48.68 ± 0.09
01 53.52 ± 0.33 56.39 ± 1.42 49.33 ± 0.10 53.88 ± 0.61
02 59.91 ± 0.34 55.16 ± 0.22 51.96 ± 0.52 48.97 ± 0.04

Table 2: Results of the MobileNetV2-based baseline

Section AUC [%] pAUC [%]
Source Target Source Target

ToyCar
00 66.56 ± 2.68 61.32 ± 5.94 66.47 ± 5.67 52.61 ± 2.41
01 71.58 ± 5.54 72.48 ± 3.68 66.44 ± 2.84 63.99 ± 2.60
02 40.37 ± 7.19 45.17 ± 3.36 47.48 ± 0.23 48.85 ± 0.94

ToyTrain
00 69.84 ± 4.39 46.28 ± 3.85 54.43 ± 1.65 51.27 ± 0.73
01 64.79 ± 3.65 53.38 ± 2.47 54.09 ± 1.15 49.60 ± 0.88
02 69.28 ± 6.73 51.42 ± 2.64 47.66 ± 0.40 53.40 ± 1.12

Fan
00 43.62 ± 2.35 53.34 ± 2.03 50.45 ± 1.15 56.01 ± 1.38
01 78.33 ± 1.52 78.12 ± 4.25 78.37 ± 2.26 66.41 ± 7.16
02 74.21 ± 3.85 60.35 ± 3.79 76.80 ± 0.78 60.97 ± 6.55

Gearbox
00 81.35 ± 1.59 75.02 ± 2.92 70.46 ± 3.67 64.77 ± 2.52
01 60.74 ± 5.11 56.27 ± 8.27 53.88 ± 2.82 53.30 ± 2.97
02 71.58 ± 7.16 64.45 ± 9.67 62.23 ± 6.67 55.58 ± 7.90

Pump
00 64.09 ± 4.34 59.09 ± 3.08 62.40 ± 1.90 53.96 ± 0.93
01 86.27 ± 3.18 71.86 ± 5.97 66.66 ± 5.23 62.69 ± 2.33
02 53.70 ± 4.99 50.16 ± 3.78 50.98 ± 1.23 51.69 ± 1.03

Slide rail
00 61.51 ± 4.92 51.96 ± 3.17 53.97 ± 2.03 51.96 ± 2.96
01 79.97 ± 3.70 46.83 ± 10.65 55.62 ± 1.57 52.02 ± 4.17
02 79.86 ± 1.41 55.61 ± 5.48 71.88 ± 4.64 55.71 ± 2.84

Valve
00 58.34 ± 4.01 52.19 ± 3.33 54.97 ± 4.43 51.54 ± 1.88
01 53.57 ± 2.26 68.59 ± 2.84 50.09 ± 0.45 57.83 ± 2.49
02 56.13 ± 1.96 53.58 ± 0.55 51.69 ± 0.32 50.86 ± 0.84

4. CHALLENGE RESULTS AND DISCUSSION

4.1. Results for evaluation dataset

We received 75 submissions from 26 teams, and 20 teams achieved
better performance than the baseline systems. The harmonic means
of the AUC scores of the top 10 teams [24–33] are shown in Fig.
1 for the source and target domains. As shown in the figure, the
performance for which machine type is high or low varies greatly
from team to team. However, the score on the target domain roughly
correlates to the official ranking.

We find that there are two remarkable approaches in high-rank
solutions: the first is an ensemble of OE-based detection and “in-
lier modeling” (IM)-based detection [24, 27, 28]. Here, IM refers
to out-of-distribution (OOD) detection methods based on modeling
a distribution of inlier samples, for example, AE, k-nearest neigh-
bors (kNN), local outlier factor (LOF), Gaussian mixture models
(GMM), normalizing flows (NF), interpolation deep neural network
(IDNN) [6], and their conditional versions. The second approach is
IM-based detection for features learned in a machine-identification
task [25, 26]. We describe the details in the following sections.
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Figure 1: Evaluation results of top 10 teams in team ranking. AUC for source domains (top) and AUC for target domains (bottom). Label “A”
and “M” on the x-axis means AE-based and MobileNetV2-based baselines, respectively.

4.2. Parallel-type hybrid approach: ensemble of OE-based and
IM-based detectors

The first, fourth, and fifth-place teams [24, 27, 28] utilized this type
of approach. OE-based detectors have a weakness in that their per-
formance is severely degraded when the distributions of different
sections (roughly, machine products) are too similar or too differ-
ent [8, 34]; ensembles of OE and IM can reduce this OE weakness
by leveraging the robustness of IM. The 2020 first-place team [9]
used an ensemble of OE-based and IM-based detectors, using Mo-
bileNetV2 for OE and IDNN for IM. The 2021 first-place team [24]
also used this type of approach, using multiple types of OE models
and a conditional NF. Surprisingly, the technical report shows that
this team did not perform any domain adaptation, but the perfor-
mance of the target domain is outstanding. Taking into account the
low performance of the individual subsystems of this team, we can
guess that the ensemble gave them high generalization performance
in both domains.

The fourth and fifth-place teams [27, 28] also took ensembles
of OE and IM. However, unlike the first-place team, they prepared
a model for each domain and performed domain adaptation, result-
ing in comparable AUC scores to the second and third-place teams
in both domains. For example, the fifth-ranked team [28] is the
only team to achieve AUC scores over 55% on all machine types
in both domains. Although this ensemble-type approach tends to
increase its model complexity, surprisingly, the model of the fifth-
place team [28] is small. Further improving the performance of
domain adaptation while maintaining the compactness of the model
will continue to be a research problem.

4.3. Serial-type hybrid approach: IM-based detection for fea-
tures learned in a machine-identification task

The second and third-place teams [25, 26] utilized this type of
approach. They extracted features for the machine-identification
task and performed IM-based detection on the extracted fea-
tures. In training, the feature extraction model was first trained in
the machine-identification task like OE-based methods, and then

the IM-based detection model was trained. The aforementioned
ensemble-type approach can be thought of as a parallel-type hy-
brid, whereas this approach can be thought of as a serial-type hybrid
of OE and IM. This approach uses the powerful feature extraction
of OE, but overcomes its aforementioned instability by taking ad-
vantage of the robustness of IM. In addition, this approach has the
advantage of preventing the model complexity associated with en-
sembles.

Domain adaptation was performed only on IM-based detec-
tors and not on feature extractors by the second and third-place
teams [25, 26]. Such a domain adaptation method is less prone to
overfitting because it fine-tunes only a limited range, and is con-
sidered effective when the number of training samples in the target
domain is small. However, there is no guarantee that the features
that are effective for machine identification will remain effective af-
ter the domain shift. In the future, it is desirable to verify how wide
the effective range of this approach is and how far its performance
for domain adaptation can be improved.

5. CONCLUSION

We presented an overview of the task and analysis of the solutions
submitted to the DCASE 2021 Challenge Task 2. The main chal-
lenge of this task was to detect unknown anomalous sounds where
the acoustic characteristics of the training and testing samples were
different. We analyzed all evaluation results and submissions, and
found that there are two types of remarkable approaches that TOP-5
winning teams adopted, i.e., 1) the parallel-type hybrid: ensemble
approaches of OE-based and IM-based detectors and 2) the serial-
type hybrid: approaches based on IM-based detection for features
learned in the machine-identification task. Both two approaches are
promising, but there is some room for performance improvement
for domain adaptation. For the parallel-type hybrid, future work
is to improve the performance of domain adaptation while main-
taining the compactness of the model. Future work is needed for
the serial-type hybrid to verify how wide this approach’s effective
range is and improve the domain adaptation performance.
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