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ABSTRACT

Sound event localization and detection (SELD) is an emerging re-
search topic that aims to unify the tasks of sound event detection
and direction-of-arrival estimation. As a result, SELD inherits the
challenges of both tasks, such as noise, reverberation, interference,
polyphony, and non-stationarity of sound sources. Furthermore,
SELD often faces an additional challenge of assigning correct cor-
respondences between the detected sound classes and directions of
arrival to multiple overlapping sound events. Previous studies have
shown that unknown interferences in reverberant environments of-
ten cause major degradation in the performance of SELD systems.
To further understand the challenges of the SELD task, we per-
formed a detailed error analysis on two of our SELD systems, which
both ranked second in the team category of DCASE SELD Chal-
lenge, one in 2020 and one in 2021. Experimental results indicate
polyphony as the main challenge in SELD, due to the difficulty in
detecting all sound events of interest. In addition, the SELD sys-
tems tend to make fewer errors for the polyphonic scenario that is
dominant in the training set.

Index Terms— DCASE, error analysis, polyphony, sound
event localization and detection

1. INTRODUCTION

Sound event localization and detection (SELD) has many applica-
tions in urban sound sensing [1], wildlife monitoring [2], surveil-
lance [3], autonomous driving [4], and robotics [5]. SELD is an
emerging research field that aims to combine the tasks of sound
event detection (SED) and direction-of-arrival estimation (DOAE)
by jointly recognizing the sound classes, and estimating the direc-
tions of arrival (DOA), the onsets, and offsets of detected sound
events [6].

The introduction of the SELD task in the 2019 Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) has significantly accelerated SELD research. Many sig-
nificant contributions have been made over the last three years in
terms of datasets, evaluation metrics, and algorithms [7]. The
TAU Spatial Sound Events dataset [8] used in DCASE 2019 in-
cluded only stationary sound sources, with 72 room impulse re-
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sponses (RIRs) from 5 different locations, and only 20 distinct sam-
ples for each of the 11 sound classes. The TAU-NIGENS Spatial
Sound Events dataset [9] used in DCASE 2020 saw an introduction
of moving sound sources, more RIRs from 15 different locations,
and 14 sound classes extracted from the NIGENS General Sound
Events Database [10], with around 30 to 50 distinct samples per
class. The 2021 edition [11] introduced unknown directional in-
terferences, making the sound scenes more realistic, in addition to
the increase in the maximum polyphony of target events to three,
from two in the 2019 and 2020 runs. The number of sound classes
was reduced to 12, as some classes were used as interferences. All
three SELD datasets provide both first-order ambisonic (FOA) and
microphone array (MIC) formats.

The SELD evaluation metrics have evolved over the past three
years. In DCASE 2019, SED and DOAE performances were eval-
uated independently. Segment-wise error rate (ER) and F1 score
evaluation were used for SED [12], while frame-wise DOA error
and frame recall were used for DOAE [13]. Since 2020, SED and
DOAE were evaluated jointly with location-dependent ER and F1
score for SED, and class-dependent localization error (LE) and lo-
calization recall (LR) for DOAE [14]. The 2021 metrics further take
into account overlapping same-class events [11].

On the algorithm aspect, there have been many developments
for SELD, inside and outside the DCASE Challenges, in the ar-
eas of data augmentation, feature engineering, model architectures,
and output formats. In 2015, an early monophonic SELD work
by Hirvonen [15] formulated SELD as a classification task, where
each output class represents a sound class-location pair. In 2018,
Adavanne et al. pioneered a seminal polyphonic SELD work that
used a single-input multiple-output convolutional recurrent neural
network (CRNN) model, SELDnet, to jointly detect sound events
and estimate the corresponding DOAs [6]. In 2019, Cao et al. pro-
posed a two-stage strategy by training separate SED and DOA mod-
els [16], then using the SED outputs as masks to select the DOA
outputs, significantly outperforming the jointly-trained SELDnet.
Cao et al. later proposed an end-to-end SELD network [17] that
used soft parameter sharing between the SED and DOAE encoder
branches and output trackwise predictions. An improved version
of this network [18] replaced the bidirectional gated recurrent units
(GRU) with multi-head self-attention (MHSA) to decode the SELD
outputs [18]. In 2020, Shimada et al. proposed a new output for-
mat for SELD which unified SED and DOAE into one loss func-
tion [19]. This was amongst the few works which successfully used
the linear-frequency for spectrograms and interchannel phase dif-
ferences as input features, instead of the mel spectrograms. A new
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CNN architecture, D3Net [20], was adapted into a CRNN for this
work and showed promising results. In another research direction,
Nguyen et al. proposed to solve SED and DOAE separately, use a
bidirectional GRU to match the SED and DOAE output sequences,
then produce event-wise SELD outputs [21, 22]. This was based
on the observation that different sound events often have different
onsets and offsets, resulting in temporal matching in the SED and
DOAE output sequences. In 2021, Nguyen et al. proposed a new
input feature, SALSA, which spectrotemporally aligns the spatial
cues with the signal power in the linear-frequency scale to improve
SELD performance [23].

The top SELD system for DCASE 2019 trained four separate
models for sound activity detection, SED, single-source DOAE, and
two-source DOAE [24]. The top systems for both DCASE 2020 and
2021 synthesized a larger dataset from the original data, employed
many data augmentation techniques, and combined different SELD
models into ensembles [25, 26]. Other highly ranked solutions also
intensively used data augmentation and ensemble methods.

Since SELD consists of both SED and DOAE tasks, it inher-
its many challenges from both SED and DOAE, such as noise, re-
verberation, interference, polyphony, and non-stationarity of sound
sources. Furthermore, SELD often faces an additional challenge in
correctly associating SED and DOAE outputs of multiple overlap-
ping sound events. In an attempt to dissect the difficulties of the
SELD task, Politis et al. compared the performances of the same
SELD system in different acoustic environments [11] with different
combinations of noise, reverberation, and unknown interferences.
The authors founded that, in absence of unknown interferences,
ambiance noise has little negative effects on SELD performance,
while reverberation significantly reduces the SELD performance in
all noise combinations. Unknown interferences degrade SELD per-
formances by the largest margin compared to noise and reverbera-
tion. In addition, using the FOA format generally produces better
performance than the MIC format.

To further understand the challenges facing SELD, we per-
formed detailed error analysis on the SELD outputs, with the fo-
cus on polyphony, moving source, class-location interdependence,
class-wise performance, and DOA errors, using our two SELD
systems which both ranked second in the team category for the
2020 and 2021 DCASE Challenges [23, 27]. Experimental results
showed that polyphony is the main factor that decreases the SELD
performance across all the evaluation metrics, explaining why un-
known interferences reduced the SELD performance by the largest
extent. Interestingly, we also found that SELD systems do not nec-
essarily favor single-source scenarios, which is easier than poly-
phonic cases. Instead, SELD systems achieved lower error rates in
polyphonic cases which dominate the training dataset. The rest of
the paper is organized as follows. Section 2 describes our analysis
method. Section 3 presents the experimental results and discus-
sions. Finally, we conclude the paper in Section 4.

2. ANALYSIS METHOD

In this section, brief descriptions of the SELD datasets and systems
are provided. Error analyses were performed on the SELD outputs
of the two SELD systems which both ranked second in the team cat-
egory for the 2020 and 2021 DCASE Challenges [23, 27]. The 2021
version of the evaluation metrics was used in all analyses. For con-
venience, the TAU-NIGENS Spatial Sound Events 2020 and 2021
datasets used in the DCASE Challenges [9, 11] are referred to here
as the SELD 2020 and 2021 datasets, respectively.

Characteristics 2020 2021

Channel format FOA FOA
Moving sources X X
Ambiance noise X X
Reverberation X X
Unknown interferences × X
Maximum degree of polyphony 2 3
Number of target sound classes 14 12
Evaluation split eval test

Table 1: Comparison between 2020 and 2021 SELD datasets

2.1. Dataset

Table 1 summarizes some differences between the two SELD
datasets. Since both of the SELD systems require the FOA format,
only the FOA subset of the datasets were used in our experiments.
Each of the dataset consists of 400, 100, 100, and 200 one-minute
audio recordings for the train, validation, test, and evaluation splits
respectively. The azimuth and elevation ranges are [−180°, 180°)
and [−45°, 45°], respectively. During the developmental stage, the
validation set was used for model selection while the test set was
used for evaluation. During the evaluation stage, the train, vali-
dation, and test data (collectively known as the development split)
were used for training evaluation models. For the 2020 SELD
dataset, the results on the evaluation split were used for the error
analyses. Since the ground truth for the evaluation split of the 2021
SELD dataset has not been publicly released at the time of writing,
the results on the test split of the 2021 SELD dataset were used for
error analysis instead.

2.2. Evaluation metrics

To evaluate the SELD performance, we used the official SELD eval-
uation metrics [7] from the DCASE 2021 Challenge. The metrics
not only jointly evaluate SED and DOAE, but also take into account
the cases where multiple instances of the same class overlap. The
SELD evaluation metrics consist of location-dependent error rate
(ER≤T ) and F1 score (F≤T ) for SED; and class-dependent local-
ization error (LECD), and localization recall (LRCD) for DOAE. A
sound event is considered a correct detection only if it has a cor-
rect class prediction and its estimated DOA is also less than T away
from the DOA ground truth, where T = 20° for the official chal-
lenge. The DOAE metrics are also class-dependent, that is, the
detected DOA is only counted if its corresponding detected sound
class is correct. A good SELD system should have low ER≤T , high
F≤T , low LECD, and high LRCD.

2.3. SELD systems

We denote two of our SELD systems that ranked second in the team
categories of the 2020 and 2021 DCASE challenges as NTU’20 and
NTU’21, respectively. Table 2 shows the performances of the base-
lines, the top-ranked solutions, and our second-ranked systems in
2020 and 2021. NTU’20 is an ensemble of sequence matching net-
works [21, 27] while NTU’21 is an ensemble of different models
trained on our new proposed SALSA features for SELD [23]. Both
systems use the class-wise output format, which can only detect a
maximum of one event of a particular class at a time. Both systems
outperformed the respective baselines by a large margin, and only
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Year System ER≤20° F≤20° LECD LRCD

2020 Baseline [9] 0.69 0.413 23.1° 0.624
(eval) #1: USTC’20 [25] 0.20 0.849 6.0° 0.885

#2: NTU’20 [27] 0.23 0.820 9.3° 0.900

2021 Baseline [11] 0.73 0.307 24.5° 0.448
(test) #1: Sony’21 [26] 0.43 0.699 11.1° 0.732

#2: NTU’21 [23] 0.37 0.737 11.2° 0.741

Table 2: Performance of selected SELD systems.

(a) Polyphonic distribution (b) Static vs moving

Figure 1: Segment-wise polyphonic and static distribution per year.

perform slightly worse than the respective top-ranked system. The
2020 results in Table 2 were computed using the 2020 SELD eval-
uation metrics. For subsequent sections, the results of the NTU’20
system were recomputed using the 2021 metrics.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In each subsection concerning a factor of variation, we performed
an analysis on the data distribution of 2020 and 2021 SELD
datasets, followed by an analysis of the SELD results. Overall, the
2021 dataset is much more challenging than the 2020 dataset. For
detailed analyses, ER≤T is further broken down into substitution,
deletion, and insertion errors, while F≤T is further broken down
into precision and recall. Since the SELD metrics are segment-
based, i.e., outputs are divided into segments of 1 s before being
evaluated, we used the provided ground truth to group the segments
based on polyphony (0, 1, 2, and 3 sources), static and moving
sources to compute the metrics for each case.

3.1. Effect of polyphony

Figure 1(a) shows the segment-wise polyphonic distribution of 2020
and 2021 datasets, which are dominated by single-source and two-
source segments, respectively. On average, there are 1.11 and 1.85
events per segment in the 2020 and 2021 datasets, respectively. Ta-
ble 3 shows the breakdown of the SELD performance for each poly-
phonic case. The DOAE metrics clearly show that polyphony is a
major cause of performance degradation. For both NTU’20 and
NTU’21 systems, as the number of overlapping sources increases,
LECDincreases and LRCD decreases. Interestingly, polyphony does
not always degrade SED performance. The peak performances of
ER≤20° and precision were achieved in the degree of polyphony
that dominates the respective dataset, which is single-source for the
2020 dataset and two-source for the 2021 dataset. This result sug-

2020 2021

Metrics 1 2 All 1 2 3 All

↓ ER≤20° 0.108 0.331 0.232 0.349 0.338 0.394 0.372
↓ Substitution 0.029 0.072 0.052 0.093 0.104 0.129 0.114
↓ Deletion 0.042 0.155 0.103 0.091 0.137 0.182 0.152
↓ Insertion 0.038 0.104 0.078 0.164 0.096 0.083 0.105

↑ F≤20° 0.930 0.765 0.845 0.784 0.763 0.704 0.737
↑ Precision 0.932 0.788 0.875 0.757 0.780 0.746 0.756
↑ Recall 0.928 0.743 0.833 0.813 0.747 0.666 0.719

↓ LECD 5.6 13.4 9.4 6.8 10.3 13.5 11.2
↑ LRCD 0.930 0.775 0.846 0.816 0.764 0.701 0.741

Table 3: SELD performance w.r.t. degree of polyphony

2020 2021

Metrics Static Moving All Static Moving All

↓ ER≤20° 0.214 0.239 0.232 0.379 0.357 0.372
↑ F≤20° 0.854 0.841 0.845 0.731 0.745 0.737
↓ LECD 8.7 10.0 9.4 10.5 11.7 11.2
↑ LRCD 0.847 0.846 0.846 0.725 0.751 0.741

↓ ER≤180° 0.166 0.168 0.171 0.334 0.298 0.318
↑ F≤180° 0.898 0.891 0.892 0.778 0.800 0.789

Table 4: SELD performance of static and moving sources.

gests that one possible solution to tackle polyphony is to introduce
more data samples for difficult cases.

When the number of overlapping sources increases, the SED
error compositions also change. The deletion error rate rapidly in-
creases, the insertion error rate sharply decreases, and the substitu-
tion error rate increases. In addition, the recall rate decreases sig-
nificantly. It is clear that the SELD systems struggle to detect all the
present events in polyphonic cases.

In the absence of any event of interest, the insertion error rates
are 0.030 and 0.122 for NTU’20 and NTU’21 systems, respec-
tively. When comparing the SELD performances between the 2020
and 2021 setups, the single-source results in 2021 are significantly
worse than those in 2020 across all metrics. In addition, the substi-
tution errors across all degrees of polyphony are much higher in the
2021 setup, than in 2020. These results show the detrimental effect
of unknown interferences that were introduced in the 2021 dataset,
consistent with the findings in [11].

3.2. Effect of moving sound sources

Figure 1(b) shows the segment-wise distribution of static and mov-
ing sound sources, not counting empty segments, based on the pro-
vided ground truth. A segment is considered a moving one if at
least one sound source is moving. Since there are more overlap-
ping sources in the 2021 dataset, the proportion of moving seg-
ments is significantly higher than the 2020 dataset. Table 4 presents
the SELD performance for both cases. The LECD of moving-
source cases is higher than those of static-source cases, as ex-
pected. For the 2020 dataset, the LRCD are similar for both cases,
and the performance gap for SED disappears when we compute
location-independent SED metrics (by setting the DOA threshold
to T = 180°). These results suggest that moving sources have lit-
tle effect on SED performance and mainly affect DOAE. For the
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Figure 2: SED performance across different DOA thresholds.

(a) Localization error (b) Localization recall

Figure 3: Localization error and recall by class dependencies.

2021 dataset, all metrics are better for moving-source cases com-
pared to single-source cases. This contradictory result may be due
to the skewed distribution and requires further investigation once
the evaluation ground truth is made available.

3.3. Class and location interdependency

To understand the dependency of location-dependent SED metrics
on the correctness of the detected DOAs, we investigate the effect
of the different DOA thresholds T ° on ER≤T ° and F≤T °, as shown
in Figure 2. The gaps between the SED metrics for T = 20° and the
location-independent T = 180° are not significantly large, suggest-
ing that many estimated DOAs are within the 20° threshold. How-
ever, the location-dependent SED metrics deteriorate quickly as the
DOA threshold reduces to 10°, suggesting a significant number of
the estimated DOAs deviate by more than 10° from the ground truth.

To understand the dependency of classification-dependent DOA
metrics on the correctness of the predicted classes, we show the
classification-dependent and classification-independent LE and LD
in Figure 3. When not accounting for the predicted class, the LR
significantly increases, leading to some unwanted rise in LE.

3.4. Class-wise performance

Due to space constraints, we only included the segment-wise class
distribution and the class-wise performance of 2021 setup in Fig-
ure 4. The segment-wise class distribution in Figure 4(a) is highly
skewed, with the footstep class accounting for the highest propor-

(a) Class distribution (b) Class-wise F≤20°

Figure 4: Segment-wise class distribution of 2021 SELD dataset
(test split) and class-wise location-dependent F score of NTU’21
system.

tion of 21.2 %, while the female speech accounting for the lowest at
1.3 %. However, the class-wise F≤20° scores are more even, and the
class with the highest segment-wise proportion does not correspond
to highest F≤20° score. One possible reason is that it is difficult
to detect all footstep sound due to discontinuities, low bandwidth,
and low energy. In addition, class-wise performance is highly de-
pendent on the SELD model and the quality of training samples.
Interestingly, the female speech class with the highest F≤20° score
of 94.2 % has the lowest segment-wise proportion. Other classes
such as knock and male speech also have high F≤20° scores despite
the low segment-wise proportions.

3.5. Azimuth vs elevation error

For the NTU’20 system, the LECD contributed by azimuth and ele-
vation are 6.3° and 5.3°, respectively. For the NTU’21 system, the
LECD contributed by azimuth and elevation are 7.9° and 6.2°, re-
spectively. The azimuth and elevation errors are similar although
the azimuth range of [−180°, 180°) is much larger than elevation
range of [−45°, 45°], suggesting that it is more difficult to estimate
elevation angles than azimuth angles.

4. CONCLUSION

In realistic acoustic conditions with noise and reverberation,
polyphony and unknown interferences appear to be the biggest chal-
lenges for SELD. In the presence of unknown interferences, SELD
systems tend to make more substitution errors. When there are
several sound events, either due to polyphony or unknown interfer-
ences, the SELD systems struggle to detect all events of interests,
leading to low recall and high deletion error rate. Interestingly, the
overall SED error rate is at the lowest for the polyphonic case that
dominates the dataset. Moving sound sources mainly increase the
localization errors, leading to small reduction in location-dependent
SED metrics. High segment-wise representation of a class also does
not necessary translate to high SED performances. Localization er-
ror reduction poses significant challenge beyond a threshold, espe-
cially as elevation errors are often as high as azimuth errors. The
study of same-class polyphonic events is left for future works due
to the limitations of the current systems studied.
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