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ABSTRACT

We present a neural network-based sound event detection system
that outputs sound events and their time boundaries in audio sig-
nals. The network can be trained efficiently with an amount of
strongly labeled synthetic data and weakly labeled or unlabeled real
data. Based on the mean-teacher framework of semi-supervised
learning with RNNs and Transformer, the proposed system employs
multi-scale CNNs with efficient channel attention, which can cap-
ture the various features and pay more attention to the important
area of features. The model parameters are learned with multi-
ple consistency criteria, including interpolation consistency, shift
consistency, and clip-level consistency, to improve the generaliza-
tion and representation power. For different evaluation scenar-
ios, we explore different pooling functions and search for the best
layer. To further improve the performance, we use data augmen-
tation and posterior-level score fusion. We demonstrate the per-
formance of our proposed method through experimental evaluation
using the DCASE2021 Task4 dataset. On the validation set, our en-
semble system achieves the PSDS-scenario1 of 40.72% and PSDS-
scenario2 of 80.80%, significantly outperforming that of the base-
line score of 34.2% and 52.7%, respectively. On the DCASE2021
challenge’s evaluation set, our ensemble system is ranking 7 among
the 28 teams and ranking 14 among the 80 submissions.

Index Terms— sound event detection, Transformer, channel
attention, semi-supervised learning, consistency training

1. INTRODUCTION

Sound event detection (SED) is a useful technique for helping us
what is happening in an environment by identifying sounds [1, 2, 3].
SED predicts not only the sound event types in an audio recording
but also the corresponding onset and offset times. Recently, De-
tection and Classification of Acoustic Scenes and Events (DCASE)
promotes researches on sound detection and classification by an-
nual workshops and challenges. To learn less from human annota-
tion and more from data, DCASE 2021 Task 4 [4] proposes semi-
supervised learning to explore the possibility of learning SED with
the data of strongly labeled, weakly labeled, and unlabeled. Further-
more, DCASE proposed two evaluation metrics: PSDS-scenario
1 (PSDS 1) requires that SED system needs to react fast upon an
event detection; PSDS-scenario 2 (PSDS 2) requires that SED sys-
tem must avoid confusion between classes but the reaction time is
less crucial than in the previous scenario.

One well-known semi-supervised learning approach is to train
CRNN [5] with the mean-teacher framework [6]. CRNN utilizes
CNNs to extract the short-term and local information and RNNs
to capture the long-term contextual information. The mean-teacher

Figure 1: Overview of our proposed system. With the multi-scale
CNNs and ECA-net based on RNNs/Transformer network, learn-
ing of the mean-teacher framework is enhanced with multiple ob-
jectives. ICT/SCT encourages the prediction of interpolated/time-
shifted data to be consistent with the interpolated/time-shifted pre-
diction. CCT encourages the origin output consistent with the clip-
level classifier output. di, dj , dk: the original data points; dmixup:
the mixture of di and dj ; dshift: time-shift of dk; Sθ, Tθ′ : the
student and teacher model.

framework exploits consistency regularization to stabilize the clas-
sifier output for unlabeled data or weakly-labeled data. Besides, the
transformer architecture [7] can extract global information while
reducing the high computational cost of RNN and achieve state-
of-the-art performance on multiple tasks, such as speech recogni-
tion [8], speaker recognition [9], speaker diarization [10], text-to-
speech [11], audio tagging [12], and sound event detection [13].

In this paper, we first explore the performance of RNNs-based
and Transformer-based neural networks for two evaluation metrics,
PSDS 1 and PSDS 2. Then, since the length of sound events is very
different so that we apply the multi-scale CNNs [14] with efficient
channel attention (ECA-Net) [15] to capture the more various and
important features. Meanwhile, we extend the consistency criteria
for model training in mean-teacher framework to include interpola-
tion consistency (ICT) [16], shift consistency (SCT) [17], and clip-
level consistency (CCT) [18]. In addition, we apply data augmen-
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Figure 2: From left to right, the network architecture of multi-scale CNN block, efficient channel attention network (ECA-Net), and Trans-
former encoder block.

tation and posterior-level score fusion to further improve the model
performance. Finally, on the validation set and public evaluation set
of DCASE 2021 Task4, our proposed system both outperform the
baseline system.

The rest of the paper is organized as follows. In Section 2, we
introduce the proposed network architecture, multiple consistency
schemes, data augmentation, and posterior-level score fusion to im-
prove the SED system. Section 3 describes the dataset, audio pre-
processing, and training setups. Section 4 presents the experimental
results and analysis. Finally, we draw conclusion in Section 5.

2. PROPOSED METHODS

2.1. Network architecture

2.1.1. Multi-scale CRNN / CNN-Transformer

From strongly labeled training data, we estimate duration of each
sound event as below. 0∼2s: alarm/bell/ringing, cat,
dishes, dog, and speech. 4∼6s: blender and running
water. 7∼10s: electric shaver/toothbrush, frying,
and vacuum cleaner. The length of sound events is various and
cause the model to work with inconsistent accuracy for the event of
different scales. Thus, we refer to [14] to build a multi-scale CNN
block to capture the richer features, which contains the kernel size
of 1x1, 3x3, 5x5 and uses addition to integrate features of different
scales, as shown in the left of Figure 2. In 7 layers of multi-scale
CNN block, we also utilize batch normalization and ReLU acti-
vation to speed up and stabilize training, each of which attaches
an average-pooling layer to calculate the average for each patch of
the feature map and downsample feature dimensions along both the
time axis and the frequency axis.

To obtain the long-term contextual information, we use the
RNNs and transformer encoder to form CRNN [19, 5] and CNN-
Transformer [20, 13]. RNNs are applied to two layers of bi-
directional gated recurrent unit (GRU) like DCASE 2021 baseline.
The network architecture of the transformer encoder is as shown in
the right of Figure 2. Positional encoding is used to enhance the out-
put features from the multi-scale CNN blocks with order informa-
tion before the transformer blocks. A transformer encoder block has
layer normalization, multi-head attention, and feed-forward layer.
The multi-head attention estimates the similarity between query and
key and extracts value as a weighted sum. The mechanism allows
the model to jointly pay attention to the information from different

positions. The fully connected feed-forward layer with ReLU acti-
vation is applied to each position identically. For regularization, we
adopt pre-layer normalization (Pre-LN) [21] and residual connec-
tion. Finally, the SED classifier consists of a fully connected layer
and sigmoid function to discriminate the sound event types.

2.1.2. Efficient Channel Attention

The effect of the acoustic feature extraction largely determines the
model ability to predict different sound events and affects the final
classification result. However, the attention mechanism can make
the model pay more attention to areas which may be important fea-
tures, and improve the model ability to distinguish features of sound
events. We combine the efficient channel attention network (ECA-
Net) [15] in multi-scale CNN blocks before adding features of dif-
ferent scales, as shown in the left of Figure 2. ECA-Net is composed
of adaptive average pooling (A-AvgPool) layer, 1D convolutional
(1D-CNN) layer, and sigmoid function, as shown in the middle of
Figure 2. A-Avgpool is applied along the time axis and 1D-CNN
calculate the attention of each channel. The kernel size of 1D-CNN
is defined by

k =

∣∣∣∣ log2(C) + b

γ

∣∣∣∣
odd

(1)

where k and C denote kernel size and channel dimensional, γ and b
are set to 2. Clearly, high-dimensional channels have longer range
interaction, vice versa.

2.1.3. Pooling Function

Wang et al. [22] compared five different types of pooling functions
in the multiple instance learning (MIL) framework for SED, namely
attention pooling, max pooling, average pooling, linear softmax,
and exponential softmax. The formula of each pooling function is
presented in Table 2. The attention pooling estimates the weights
for each frame are learned with a dense layer in the network. The
max pooling simply take the large probability in all frames. The
average pooling assigns an equal weight for all frames. The lin-
ear softmax assigns weights equal to the frame-level probability,
while the exponential softmax assigns a weight of exponential to
the frame-level probability. DCASE 2021 Task4 baseline [5] uses
attention pooling to transform frame-level into clip-level. However,
with different evaluation scenarios, there should be a relatively ap-
propriate pooling function to replace.
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2.2. Semi-Supervised Learning

We employ the mean-teacher framework for its fast convergence,
instead of the Π model [23] or temporal ensembling [24], exploit-
ing consistency regularization to stabilize the classifier output for
unlabeled data or weakly-labeled data. In this work, we use Mean
Square Error (MSE) loss for the consistency cost:

MSE(y, ŷ) = (y − ŷ)2, (2)

where y and ŷ denote the target and the prediction, respectively.
Next, we propose multiple consistency criteria to regularize how the
SED system should learn from unlabeled or weakly-labeled data.

2.2.1. Interpolation Consistency Training

The interpolation consistency training (ICT) [16] has been proposed
for semi-supervised learning. ICT encourages the prediction at an
interpolation of unlabeled data points to be consistent with the in-
terpolation of the prediction at these data points. Learning from
interpolation samples can help the model discriminate ambiguous
samples to improve the generalization ability. We define the ICT
loss function by

LICT = MSE(Sθ(λdi + (1 − λ)dj),

λTθ′(di) + (1 − λ)Tθ′(dj)),
(3)

where Sθ and Tθ′ denote a student model and a teacher model, di
and dj denote data points, and λ is randomly sampled from a Beta
distribution.

2.2.2. Shift Consistency Training

Inspired by ICT, we consider time-shift as another way to enhance
consistency which is similar to proposed by [17], called shift con-
sistency training (SCT). We define the SCT loss function by

LSCT = MSE(Sθ(shift(dk)), shift(Tθ′(dk))). (4)

SCT encourages the prediction of time-shift input to be consistent
with time-shift prediction. In theory, it allows the model to learn
shift-invariance and temporal localization of sound events.

2.2.3. Clip-level Consistency Training

In addition to ICT and SCT, we also apply clip-level consistency
training (CCT) [18] to enhance the ability to extract the features.
We define the CCT loss function by

LCCT = MSE(NN(dx),ClipLevel(fx)), (5)

where NN(dx) is the weighted average pooling of the multi-scale
CRNN or CNN-Transformer frame-level network output of data dx,
and ClipLevel(fx) is obtained by feeding the feature map fx of the
final multi-scale CNN block to a clip-level classifier. As shown in
Figure 1, the clip-level classifier consists of 3 extra multi-scale CNN
blocks, a global average pooling, and a fully connected layer.

2.2.4. Overall Consistency Training

In summary, the overall loss is

L = L0 + LICT + LSCT + LCCT , (6)

where L0 denotes the loss without the proposed consistency,
namely mean square error for original consistency cost and binary
cross-entropy for the supervised cost.

2.3. Data Augmentation

• Mixup [25]. It mixes two randomly selected samples from the
original training data and uses λ sampled from Beta distribu-
tion to control the strength of interpolation between two sam-
ples. The linear interpolation technique can enhance the data
diversity and robustness of the network.

• Shift [26]. It shifts a feature sequence on the time axis, and
overrun frames are concatenated with the opposite side of the
sequence. The usage helps the network learn temporal local-
ization information of the sound event.

• Masks [26]. It creates artificial data by masking a block
of consecutive time steps or frequency channels on the mel-
spectrogram instead of the raw audio. It can help the network
learn the beneficial features to be robust to the partial loss of
spectral information or speech segments.

2.4. Posterior-level Score Fusion

To improve generalization performance, we perform score fusion as
a model ensemble technique. We utilize different data augmentation
methods to build several single systems based on multi-scale CRNN
and CNN-Transformer models with different schemes. Then, we
average the raw posterior outputs p(X) for inputsX of the multiple
models:

pfusion(X) =
1

N

N∑
n=1

pn(X), (7)

where N means the total number of models for our fusion.

3. EXPERIMENTS

3.1. Dataset and Signal Preprocessing

The DESED dataset of DCASE 2021 Task 4 is comprised of 10-sec
audio clips and 10 classes of sound events. The data are in two do-
mains: real data (44.1kHz) extracted from AudioSet [27] and syn-
thetic data (16kHz) generated by Scaper [28]. Each audio clip can
be strongly labeled with the sound events and their time boundaries
annotated, weakly labeled with only the sound events annotated,
or unlabeled without any annotation. All dataset is divided into
5 subsets: weakly labeled (1,578 clips), unlabeled (14,412 clips),
strongly labeled (10,000 clips), validation set (1,168 clips), public
evaluation set (692 clips). Audio signals are resampled to 16kHz
sampling rate at first by FFmpeg tool [29]. Then, 128-channel mel-
spectrogram from them is extracted with a window size of 2048 and
hop size of 256 by Librosa tool [30]. Consequently, the size of the
input acoustic features to the deep neural network is 626 × 128.

3.2. Network Setups

The 7 layers of multi-scale CNN blocks have the number of fil-
ters:[16, 32, 64, 128, 128, 128, 128] and pooling size:[[2, 2], [2, 2],
[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]]. The 6 layers of transformer en-
coder blocks have multi-head attention with 256 units and 8 heads
and a feed-forward layer with 2048 units. For ICT and mixup aug-
mentation, the parameter λ is sampled from Beta(α, α) and α from
0.1 to 0.9 in increments of 0.1. For SCT and shift augmentation, we
choose the amount of time-shift by sampling from a normal distri-
bution with a zero mean and a standard deviation of 90. For masks
augmentation, the size of time-mask and frequency-mask are sam-
pled from a uniform distribution from 0 to 30 and 40, respectively.
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4. EVALUATION RESULTS

The evaluation of DCASE 2021 Task4 contains PSDS 1 (react fast)
and PSDS 2 (avoid class confusion). From Table 1, we can find
that the results of RNNs-based network is better than Transformer-
based one, especially on PSDS 2. Then, whatever neural network
is CRNN or CNN-Transformer, the incorporation of ICT, SCT,
and CCT has significant achievement on two scenarios. The mul-
tiple consistency training schemes on CRNN improved PSDS 1
from 34.04% to 37.86%, PSDS 2 from 53.30% to 60.87%, and on
CNN-Transformer, PSDS 1 from 33.46% to 37.33%, PSDS 2 from
48.77% to 55.87%. In addition, we observe that multi-scale CNN
blocks and ECA-Net can help the model obtain various and impor-
tant features of sound events so that CRNN can reach 65.54% and
CNN-Transformer can reach 61.10% for PSDS 2. From Table 2,
both types of neural networks are best when using attention pool-
ing at PSDS 1 and using exponential softmax at PSDS 2. We con-
sider that attention pooling learns weights from the network so that
they have a time series relationship. Therefore, it has better perfor-
mance under stricter evaluation standards with time requirements.
Then, exponential softmax uses exponentials as weights to conform
to monotonicity so that the higher the prediction probability of the
time point, the higher the weight. Thus, it has better performance
under the stricter evaluation criteria with category requirements.

We combine CRNN/CNN-Transformer with proposed schemes
to build three single systems so that PSDS 1 and PSDS 2 can have
the best performance:

• (i) CNN-Transformer + ICT, SCT, CCT, Multiscale
• (ii) CRNN + ICT, SCT, CCT, Multiscale
• (iii) CRNN + ICT, SCT, CCT, Multiscale, ECA, ExpSoftmax

Based on mixup data augmentation following the baseline, we find
that (i) and (ii) improve the performance on PSDS 1, and (iii)
reach significant achievement on PSDS 2. To ensemble the sev-
eral systems, we apply several data augmentation methods to build
each single system, which includes mixup, time-shift, and time-
frequency masks, as shown in Table 3. From Table 4, our fusion
systems can achieve 40.72% of PSDS 1 and 80.80% of PSDS 2 on
the validation set, 37.42% of PSDS 1 and 69.73% of PSDS 2 on the
public evaluation set.

Table 1: Results of different schemes, based on two networks with
mixup data augmentation.

Scheme Model PSDS 1 PSDS 2

- CRNN 34.04% 53.30%
CNN-Transformer 33.46% 48.77%

+ICT CRNN 36.38% 55.87%
CNN-Transformer 33.39% 50.07%

+SCT CRNN 37.86% 59.47%
CNN-Transformer 35.61% 52.01%

+CCT CRNN 37.64% 60.87%
CNN-Transformer 37.33% 55.87%

+Multiscale CRNN 37.51% 62.63%
CNN-Transformer 34.75% 61.10%

+ECA-Net CRNN 34.71% 65.54%
CNN-Transformer 35.13% 60.27%

Table 2: Results of different pooling functions, based on above
schemes without ECA. yi and y means frame-level and clip-level.

Pooling Function Formula Model PSDS 1 PSDS 2

Attention y =
∑

i yiwi∑
i wi

CRNN 37.51% 62.63%
CNN-Transformer 34.75% 61.10%

Max pooling y = maxiyi
CRNN 36.10% 64.59%
CNN-Transformer 31.73% 59.77%

Average pooling y = 1
n

∑
i yi

CRNN 5.34% 73.95%
CNN-Transformer 4.53% 60.41%

Linear Softmax y =
∑

i y
2
i∑

i yi

CRNN 26.75% 60.17%
CNN-Transformer 24.21% 60.57%

Exponential Softmax y =
∑

i yiexp(yi)∑
i exp(yi)

CRNN 5.82% 75.35%
CNN-Transformer 4.13% 61.31%

Table 3: Results of different data augmentations, based on three
single systems.

# Model Schemes Data Augmentation PSDS 1 PSDS 2

0 CRNN - Mixup (α = 0.2) 34.04% 53.30%

1

CNN-Transformer ICT, SCT, CCT, Multiscale

Mixup (α = 0.2) 34.75% 61.10%
2 Shift 31.39% 55.05%
3 Masks 33.24% 59.04%
4 Mixup (α = 0.2)+Shift 33.43% 58.68%
5 Mixup (α = 0.2)+Masks 34.29% 61.52%
6 Shift+Masks 33.64% 55.46%

7

CRNN ICT, SCT, CCT, Multiscale

Mixup (α = 0.1) 37.69% 63.00%
8 Mixup (α = 0.2) 37.51% 62.63%
9 Mixup (α = 0.4) 36.71% 64.82%
10 Mixup (α = 0.5) 36.84% 64.18%
11 Mixup (α = 0.6) 36.55% 61.85%
12 Mixup (α = 0.7) 36.70% 63.91%
13 Shift 35.71% 61.29%
14 Masks 36.96% 64.84%
15 Mixup (α = 0.2)+Shift 37.03% 63.02%
16 Mixup (α = 0.2)+Masks 38.13% 65.32%

17

CRNN ICT, SCT, CCT, Multiscale,
ECA, ExpSoftmax

Mixup (α = 0.1) 6.81% 75.59%
18 Mixup (α = 0.2) 5.71% 76.16%
19 Mixup (α = 0.7) 5.37% 76.29%
20 Shift 4.46% 72.16%
21 Masks 5.29% 75.07%
22 Mixup (α = 0.2)+Shift 5.12% 76.19%
23 Mixup (α = 0.2)+Masks 4.82% 75.45%
24 Shift+Masks 4.83% 76.08%

Table 4: Results of the fusion systems on the two testing sets.

# Model Schemes
Validation Public eval

PSDS 1 PSDS 2 PSDS 1 PSDS 2

7∼16 CRNN ICT, SCT, CCT, Multiscale 40.72% 70.25% 37.22% 69.47%

17∼24 CRNN ICT, SCT, CCT, Multiscale,
ECA-Net, ExpSoftmax 6.08% 80.80% 8.30% 65.39%

1∼16 CRNN
CNN-Transformer ICT, SCT, CCT, Multiscale 38.79% 67.18% 37.45% 68.42%

1∼24 CRNN
CNN-Transformer

ICT, SCT, CCT, Multiscale,
ECA-Net, ExpSoftmax 37.02% 72.42% 33.56% 69.73%

5. CONCLUSION

Based on the mean-teacher framework of semi-supervised learning
with RNNs and Transformer, we present a multi-scale CNNs with
ECA-Net to capture various and important features of sound events.
For the multiple consistency criteria, ICT helps the model discrim-
inate the ambiguous samples to enhance the generalization ability,
SCT assists the model to learn better temporal information, CCT
promotes the model feature representation power. Then, an appro-
priate pooling function is applied to the specific scenario. The data
augmentation and posterior-level score fusion further improve the
performance. Finally, on the validation set and challenge’s evalua-
tion set, our proposed system significantly outperforms the baseline.
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