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ABSTRACT

One of the main issues of polyphonic sound event detection (PSED)
is the class imbalance problem caused by the proportions of active
and inactive frames. Since the target sounds occasionally appear, bi-
nary cross-entropy makes the model mainly fit on inactive frames.
This paper introduces an effective objective function, confidence
regularized entropy, which regularizes the confidence level to pre-
vent overfitting of the dominant classes. The proposed method ex-
hibits less overfitted samples and better detection performance than
the binary cross-entropy. Also, we compare our method with the
other objective function, the asymmetric focal loss also designed
to solve the class imbalance problem in PSED. The two objective
functions show different system characteristics. From an end-user
perspective, we suggest choosing a proper objective function for the
purposes.

Index Terms— Polyphonic sound event detection, class imbal-
ance problem

1. INTRODUCTION

Polyphonic sound event detection (PSED) is one of the acoustic
classification and detection tasks that detects the target sound and
timestamps in an audio signal. For many years, PSED has had fol-
lowing several challenges:

• Difficult to gather strongly labeled recordings.
• The subjectivity problem of manual labeling.
• Hard to find an analytic model that can cover the various sound

patterns.
• The class imbalance problem due to the proportion of active

and inactive frames.

The first problem has been solved with two approaches: semi-
supervised learning approaches using both labeled and unlabeled
data and training with synthetic audio mixed background noise and
target sounds. The second problem could be relieved by choos-
ing the metric when comparing the system with others [1]. And
the third problem has been solved by deep neural netoworks using
improved convolutional neural networks (CNNs), Transformer, at-
tention mechanisms, etc [2].

This study focuses on the last problem of class imbalance. Most
inactive frames (background sound) dominate an audio clip, so
the problem arises when detecting a target sound frame by frame
(Fig. 1). This phenomenon is not a problem presented only in
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Figure 1: Simple illustration of an audio clip with target sounds.

PSED task; the image object detection also has suffered from the
background-foreground class imbalance [3]. For the image object
detection, a solution is the focal loss that controls the weight pa-
rameter of cross-entropy so that train the model well for the target
object, but vice versa for the background images. Motivated by the
focal loss, the previous study in PSED proposed asymmetric focal
loss (AFL) [4] that could control the focal weights of entropies for
the inactive and active terms, respectively. AFL successfully con-
trolled the imbalance problem, but an adverse effect arose: the sys-
tem detected repetitive impulsive sounds as a long-duration sound.

In this study, we propose confidence regularized entropy
(CRE), which set the confidence threshold to the binary cross en-
tropy (BCE). When calculating the BCE, samples are eliminated
for the backpropagation during training steps if the detected results
are over the threshold. The proposed method keeps the samples less
overfitted, especially for the inactive frames. Compared to the AFL,
the proposed entropy resulted in a system that can detect the onsets
and offsets of target sounds well. Both CRE and AFL relieved the
class imbalance problem for PSED. However, they showed a differ-
ent system characteristic: the CRE-based system was advantageous
in detecting a target event’s precise localization on frames, whereas
the AFL-based system showed strength in detecting whether a tar-
get sound appeared. The details will be discussed in Section 5.2.

2. CLASS IMBALANCE PROBLEM WITH PSED

A class imbalance problem is one of the considerations for building
and training a neural network. If the class imbalance problem re-
mains unsolved, the model could remain ungeneralized [3]. When
collecting data from real world, the target sound would appear inter-
mittently rather than often; thus, one of the factors that cause class
imbalance is the imbalance between the number of active and inac-
tive frames [4] in dealing with the PSED tasks. Additionally, the
imbalance among the target sounds could appear since each event’s
duration is entirely different, and the amount of recorded sound is
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Figure 2: Bar graphs representing the duration of active sounds
(blue) and the number of active segments (yellow). Considering
the total audio length, the proportion of inactive frames is large.

also diverse according to the datasets.
The total duration and number of segments for each target

sound composing the domestic environment sound event detection
(DESED) dataset are shown in Fig. 2. In both synthetic and real
data, inactive frames have large proportions and, all the events ex-
cept speech have very low proportions.

Imoto et al. proposed asymmetric focal loss (AFL) [4] to con-
trol the entropies of active and inactive frames. The entropy be-
tween a ground truth yn,c and a model output ŷn,c is described:

AFL = −
N,C∑
n,c=0

{(1− ŷnc)γ ync log(ŷnc)︸ ︷︷ ︸
Active term

+(ŷnc)
ζ (1− ync) log(1− ŷnc)︸ ︷︷ ︸

Inactive term

}
(1)

where γ and ζ denote the parameters to control the entropies of
active and inactive frames in each, and N and C denote the number
of frames and target sounds, respectively. If γ and ζ are set to 0,
the entropy is same as the binary cross entropy, and the higher the
values, the less focal. Imoto et al. set γ and ζ to 0.0625 and 1,
respectively, which means that the objective function focuses more
on the active frames.

3. CONFIDENCE REGULARIZED ENTROPY

Suppose that there are lot proportion of speech-activated and in-
active frames among the datum. If then, the inactive points are
converged earlier than the other target sounds (e.g., cat, vacuum
cleaner, etc. in Fig. 2). Even if the training epoch is processed
enough, the inactive points are still converging more closely to one
or zero, whereas the network is less optimized for the other target
sounds. To concentrate on training the network for the false positive
and false negative data, we propose the confidence regularized en-
tropy (CRE) that can regularize confidences so that they could not
converge beyond the threshold.
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Figure 3: Training scenario when CRE is used for objective func-
tion.

CRE = − 1

NC

N,C∑
n,c=0

I|ŷnc−ync|>γ(ŷnc) · {ync · logŷnc

+(1− ync) · log(1− ŷnc)},

(2)

where I(·) denotes an indicator function. We set γ to 0.01; the
frames are excluded on each optimizing step, if those of confidence
are either over the 0.99 or under 0.01. Generally, the mixup aug-
mentation [5] is widely used for training the PSED network, and
Eq. (2) also can be used whether the mixup is applied. If the mixup
is used, confidences that are too close to the mixed labels are ex-
cluded during the training. In Section 5.1, the experimental results
will demonstrate that a system that applied both CRE and mixup
surpasses the system without either of them.

4. EXPERIMENTS

4.1. Dataset

To validate our proposed method, we used DESED database1[6].
There were ten sound events that could occur in domestic environ-
ments. For the training set, there were 10,000 synthetic clips with
strong annotations, 3,470 recorded clips with strong labels coming
from the Audioset [7], 1,578 recorded clips with weak labels, and
14,412 unlabeled-recorded clips. For the evaluation set, there were
1,168 recorded clips. Each clip had a 10 s duration and was pro-
vided either 16 kHz or 44.1 kHz and single or dual channel. All
clips were down-mixed to 16 kHz and extracted to log-mel spectro-
grams. For the details, window size and shift size were used 2048
and 255 samples, respectively, and 128 mel-filter banks.

4.2. CNN networks

The CNN architecture for the experiments is shown in Fig. 5. The
group size of convolutional layer was 4, and output channel sizes
were 32, 64, 128, 256, 256, 256 and 128, respectively. To reduce a
temporal size of feature map without temporal pooling, we stacked
frames in 4 layers. Also, we designed the axis-wise attention mod-
ule (AWAM) inspired by parallel temporal-spectral attention [8] to
improve the baseline model [9]. AWAM is a module that calculates
the sigmoid-based score for each axis and adds to the input feature
map, and it was adopted after the 2nd, 4th, and 6th convolutional
blocks. The detail of AWAM architecture is shown in Figs. 4. The
RNN network was same to the baseline CRNN introduced in [9].

1Strong labeled real recordings were newly released in DCASE 2022
challenge task 4. https://github.com/DCASE-REPO/DESED_
task/tree/master/recipes/dcase2022_task4_baseline
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Sigmoid-based score on channel axis:Axis wise attention module (AWAM)

Figure 4: Axis wise attention module. Xk denotes the output of the k-th convolutional block in Fig. 5. The architecture of fF (·) and fT (·)
are same to fC(·), but are performed on frequency and time axis, respectively.
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Figure 5: Block diagram of CNN architecture.

4.3. Experimental setup

We adopted the mean teacher [9, 10], one of the semi-supervised
learning strategies to train the detection model using the unla-
beled data. A minibatch consists of synthetic, strong, weak, and
unlabeled-recorded clips with batch sizes of 8, 8, 4, and 40 each. All
networks were optimized with the AdamW [11] optimizer and the
cosine-annealing learning rate scheduler for 50 epochs after warm-
ing up the first 50 epochs from 0 to 0.001. Also, we set the weight
decay and dropout to 0.001 and 0.5, respectively. We used event-
based f1 score [12] and polyphonic sound detection score (PSDS)
[13] for the evaluation metrics2.

2The specific parameters settings for all metrics were same to the recent
DCASE challenge.
https://dcase.community/challenge2022/
task-sound-event-detection-in-domestic-environments

5. RESULTS AND DISCUSSION

5.1. Effect of confidence regularization

The experimental results according to the objective functions are
compared in Table 1. If the other conditions are same except ob-
jective function, the systems built with CRE showed great perfor-
mances under the event-f1 and PSDS1 metrics (CRE > BCE >
AFL). Whereas, the systems built with AFL showed better perfor-
mances under the PSDS2 metric (AFL>BCE>CRE), and the sys-
tem with BCE showed medium performances for all metrics. Also,
the proposed confidence regularization method was applicable with
the mixup augmentation. The results demonstrate that if the detec-
tion performances of a mixup-applied system with BCE improved
more than the system without the mixup, the mixup-applied system
with CRE also improved. Although sounds and labels are mixed up,
Eq. (2) keeps an output not too much fitting to the mixed label.

Confidence of detected sound event versus number of frames
graphs are shown in Fig. 7. In the aspect of detection as the inac-
tive frame, many frames with detection results close to 0 when BCE
was used for the objective function. Most of the detection results of
the CRE-based system were also close to 0 but more spread from 0
to 0.02 than the system with BCE. In other words, CRE made the
model less overfitted to inactive frames, which shows the class im-
balance problem was relieved. Whereas, the detection confidences
of the AFL-based system were evenly distributed rather than biased
towards zero.

In the aspect of detection as the active frame, all systems show
similar results to each other but have a little difference. The peak
of the CRE-based system’s curve was left-biased due to the thresh-
old; however, the peak of the AFL-based system’s curve was right-
biased since the focal weight was set to train well for the active
frames. It demonstrates that the CRE-based network is trained well
up to the regularization threshold and is prevented from overfitting
when the confidences come over the threshold. On the other hand,
according to the focal weights, the AFL-based network is trained
well focused for the active frames but less focused for the inactive
frames.

5.2. Discussion: system characteristics and PSDS

As shown in the experimental result, the system’s scores are differ-
ent according to the evaluation metrics. For instance, the system
trained with CRE outperformed the system with AFL on PSDS1
but vice versa on PSDS2. Then which system should we choose or
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Figure 6: Two detection examples of CRE- and AFL-based systems. (From up to bottom: log-mel spectrogram, ground truth, CRE-based
system, AFL-based system)

Table 1: Comparison of the detection performances among the
different objective functions.

Network Loss Event-F1 PSDS1 PSDS2

CRNN
w/o mixup

BCE 43.27 33.78 59.91
AFL 40.63 31.99 65.05
CRE 45.50 33.98 57.30

CRNN
w/ mixup

BCE 44.93 34.79 58.60
AFL 41.90 32.79 60.92
CRE 46.40 35.08 57.82

CRNN+AWAM
w/ mixup

BCE 49.17 37.51 66.34
AFL 45.16 34.03 66.88
CRE 51.11 38.12 64.33

which is better? As discussed in [1], PSDS1 is an effective met-
ric for whether the system could detect the sound’s timestamp cor-
rectly; whereas it has a severe problem related to the labeler’s sub-
jectivity. PSDS2 has strength in relieving the labeler’s subjectivity;
however it is hard to detect event localization precisely, and highly
depends on the long-duration sounds.

For further description, we analyze the different detection pat-
terns of the systems as shown in Fig. 6. Just as people label subjec-
tively according to their background, systems have different char-
acteristics under the objective functions. The CRE-based system
tends to detect onsets and offsets precisely, whereas the AFL-based
system tends to detect sound longer than the ground truth. In other
words, the AFL-based system is proper to detect whether a sound
appears in a clip rather than timestamps. The more general analysis
is shown in the top graph of Fig. 7. The blue line shows that the
confidences are more fitted to zero for inactive frames than green
line. Instead, the green line is spread evenly without being biased
to one side.

From the standpoint of user experience, the CRE-based system
(system having high PSDS1 but low PSDS2) is required for users
or environments that need to detect the target sound’s onset and
offset precisely. Whereas, the AFL-based system (system having
high PSDS2 but low PSDS1) is more suitable in the environments
for whether the appearance of target sounds is more important than
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Figure 7: A graph of the number of frames over confidences of
detected target sounds. Since there are a large number of inactive
frames in the dataset, the graph of confidence near zero was log-
scaled. (Top: confidence > 0.9, bottom: confidence < 0.1)

detection resolution.

6. CONCLUSION

In this paper, we introduced the confidence regularized BCE that
could avoid overfitting inactive frames. Compared to AFL, CRE
performed better under the event-based f1 score and PSDS1. Fur-
thermore, we suggested choosing the proper objective function ac-
cording to the user’s requirements. Of course, the system having
good performance in both PSDS1 and PSDS2 is the best, but in a
situation where you have to choose between the two, we can design
a more suitable system by controlling the objective function.

7. ACKNOWLEDGEMENT

This work was supported by Institute of Information & communi-
cations Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (No.2021-0-00456, Development of
Ultra-high Speech Quality Technology for Remote Multi-speaker
Conference System)



Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

8. REFERENCES

[1] G. Ferroni, N. Turpault, J. Azcarreta, F. Tuveri, R. Serizel,
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