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ABSTRACT

We present a machine sound dataset to benchmark domain general-
ization techniques for anomalous sound detection (ASD). Domain
shifts are differences in data distributions that can degrade the detec-
tion performance, and handling them is a major issue for the appli-
cation of ASD systems. While currently available datasets for ASD
tasks assume that occurrences of domain shifts are known, in prac-
tice, they can be difficult to detect. To handle such domain shifts,
domain generalization techniques that perform well regardless of
the domains should be investigated. In this paper, we present the
first ASD dataset for the domain generalization techniques, called
MIMII DG. The dataset consists of five machine types and three do-
main shift scenarios for each machine type. The dataset is dedicated
to the domain generalization task with features such as multiple dif-
ferent values for parameters that cause domain shifts and introduc-
tion of domain shifts that can be difficult to detect, such as shifts
in the background noise. Experimental results using two baseline
systems indicate that the dataset reproduces domain shift scenarios
and is useful for benchmarking domain generalization techniques.

Index Terms— Machine sound dataset, Anomalous sound de-
tection, Unsupervised learning, Domain shift, Domain generaliza-
tion

1. INTRODUCTION

Anomalous sound detection systems (ASD) are automatic inspec-
tion systems that identify anomalous sounds emitted from machines
[1-8]. Because these systems use microphones to conduct inspec-
tions, contactless inspections of anomalies inside the machines can
be realized, unlike the vibration monitoring systems [9-11].

For the widespread application of ASD systems, researchers
have mainly tackled two types of challenges. First, in real-world
cases, only a few anomalous samples are available or provided
anomalous samples do not cover all possible types of anoma-
lies. Therefore, unsupervised anomaly detection methods are often
adopted so that the system can detect anomalies by training with
only normal samples. MIMII [12] and ToyADMOS [13] are the first
datasets that contain machine sounds in real factory environments,
and are used for benchmarking the performance of unsupervised
ASD methods.

Second, the detection performance of the system degrades due
to changes in the distribution of normal sounds (i.e., domain shifts).
Domain shifts for an ASD task can be classified into two categories;
operational domain shifts caused by changes in states of a machine

and environmental domain shifts caused by changes in the back-
ground noise or in the recording environment. One solution for
handling domain shifts is to use domain adaptation techniques and
adapt the model to the new data. MIMII DUE [14] and ToyAD-
MOS2 [15] were developed for benchmarking domain adaptation
techniques, while an unsupervised scenario was also assumed.

However, in some real-world cases, domain generalization
techniques [16-18] rather than domain adaptation techniques can
be preferred. For example, if the operational domain shifts occur
too frequently, adaptation of the model can be difficult. This is
because only a small amount of data can be used for adaptation
and frequent adaptation can be too costly. For another example, if
domain shifts are difficult to detect, such as the domain shifts in
the background noise, adaptation of the model can also be difficult.
In these cases, domain generalization can be useful for handling
domain shifts. Because these techniques aim at generalizing the
model to detect anomalies regardless of the domains, adaptation of
the model during the operation is not necessary. Therefore, domain
generalization techniques for ASD task should be investigated for
handling domain shifts that are too frequent to adapt or too difficult
to detect.

To benchmark the domain generalization techniques for ASD
task, a new dataset dedicated to the domain generalization task
should be developed. This is because the data required for domain
generalization and domain adaptation can be different. For exam-
ple, generalization of the model may require a larger number of sets
of data recorded under different conditions. Also, because domain
generalization techniques are likely to be used for domain shifts that
can be difficult to detect, this type of shifts should be included in the
dataset for domain generalization tasks.

In this paper, we present a new dataset for benchmarking ASD
methods using domain generalization techniques. The dataset con-
sists of five different machine types; fan, gearbox, bearing, slide
rail, and valve. Each machine type includes three sections, each of
which corresponds to a type of domain shift. Each section consists
of the source domain data to be used for generalizing the model
and the target domain data for evaluating the domain generaliza-
tion performance. The source domain has at least two different sets
of values that cause domain shifts to generalize the model. Also,
domain shifts that can only be handled with domain generalization
techniques are included in the dataset. The dataset is freely available
athttps://zenodo.org/record/ 6529888 and is a subset
of the dataset for Task 2 of the DCASE 2022 Challenge.
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2. RECORDING ENVIRONMENT AND SETUP

We prepared five types of machines (fan, gearbox, bearing, slide
rail, and valve), three types of factory noise data (factory noise A,
B, and C), and three different domain shift scenarios for each ma-
chine type. The types of machines and domain shift scenarios were
chosen on the basis of our experiences building ASD systems for
real-world commercial solutions. Here, we identify each scenario
of domain shifts by section IDs. The details of the type of do-
main shift for each section and the values of the parameters that
shift between domains, the domain shift parameters, are described
in Table 1.

We then recorded sound data of each machine to reproduce
the domain shift scenarios we assumed. We recorded both normal
and anomalous sounds for each domain, where to reproduce
anomalous sounds, we used deliberately damaged machines or
operated machines in an incorrect manner. For recording, we used
a TAMAGO-03 microphone manufactured by System In Frontier
Inc. [19]. The recording was conducted either in a sound-proof
room (Fan and Valve) or in an anechoic chamber (Gearbox,
Bearing, Slide rail). Although the microphone has eight channels,
we only used the first channel for the dataset. Recorded sound clips
are 16-bit audio with a sampling rate of 16 kHz and are 10 seconds
long. Examples of spectrograms for each machine type are shown
in Figure 1. A short description and recording procedures of each
machine type are as follows.

Fan An industrial fan used to keep gas or air flowing in a factory.
Operational conditions were kept the same between source and
target domains, since Fan was dedicated to environmental domain
shifts. Anomaly types include wing damage, unbalanced, clogging,
and over voltage.

Gearbox A gearbox that links a direct current (DC) motor to a
slider-crank mechanism, transmitting the power generated by the
rotation of the motor at a constant speed to the slider-crank mech-
anism. The slider-crank mechanism then converts the rotational
motion into a linear motion and raises and lowers its weight. We
changed the operation voltage and mass of the weight to cause
domain shifts. Anomaly types include gear damage and over
voltage.

Bearing Two ball-type bearings are attached to a shaft with a spin-
dle motor, and the sound is emitted from the bearing as it supports
the rotating shaft. We changed the rotation speed of the shaft and
the location of the microphones to cause domain shifts. Anomaly
types include eccentricity in the bearing for two different directions.

Slide rail (slider) A linear slide system consisting of a moving
platform and a staging base that repeats a pre-programmed opera-
tion pattern. We changed the operation velocity and acceleration
to cause domain shifts. Anomaly types include cracks on the rail,
removal of grease, and a loose belt for a belt-type slide rail.

Valve A solenoid valve that repeatedly opens and closes in accor-
dance with a pre-programmed operating pattern and is connected
to a pump to control air or water flow. We changed the operating
pattern and location of the panels surrounding the valve. Anomaly
types include contamination in the valve.

After recording the machine sounds, we mixed the prerecorded
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Figure 1: Examples of spectrograms for each machine type.

factory noise A, B, or C as the background noise to simulate real-
world environments. The factory noise A, B, and C were recorded
in different real factories and consisted of sounds of various ma-
chinery. The noise-mixed data of each section was generated by the
following steps.

1. The average power over all clips in the section, a was calcu-
lated.

2. For each clip ¢ from the section,

(a) the signal-to-noise ratio (SNR) « dB for the clip was
set to the value shown in Table 1,

(b) abackground-noise clip j was randomly selected, and
its power b; was tuned so that v = 10log,,(a/b;),
and

(c) the noise-mixed data was generated by mixing the ma-
chine sound clip ¢ and the power-tuned background-
noise clip j.

Here, the background-noise clip 7 was randomly selected from pre-
determined types of factory noise, depending on the domain shift
scenario. For Fan section 01, Bearing section 02, and Slide rail sec-
tion 02, factory noise A and B were used for source domain and fac-
tory noise C was used for target domain. For other sections, factory
noise A and B were used for both source and target domain. Also,
for Fan section 00, we additionally mixed sound data of pumps from
MIMII DUE.

The complete dataset consists of normal and anomalous oper-
ating sounds of five different types of industrial machines, and each
machine type has three sections with source and target domain sam-
ples. Table 2 lists the number of samples in each section. The train-
ing data have 990 source domain samples and ten target domain
samples for each section. We prepared ten target domain samples
for training data so that the users can utilize a small number of target
samples for generalization if the generalization of the model was too
difficult. The test data have 50 normal samples and 50 anomalous
samples for both domains.
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Table 1: Type of domain shift, values of domain shift parameter, and SNR for each section. Values of domain shift parameters represent
machines the sound of which are mixed in Fan section 00, levels of noise in Fan section 02, and locations of microphone in Bearing section

0l.
Machine type / SNR [dB] Type of Domain shift Parameter values for Parameter values for
section ID [Domain shift parameter] source-domain target-domain
00 -6.0  Mixing of different machine sound W, X Y,Z
[machine sound index]
01 -12.0  Mixing of different factory noise A, B C
Fan ..
[factory noise index]
02 N/A  Different levels of noise [noise L1(3),L2(-9) L3 (-3), L4 (-15)
level (SNR [dB])]
00 -6.0 Different operation voltage [V] 1.0,1.5,2.0,25,3.0 0.6,0.8,1.3,1.8,2.3,2.3,3.3,
3.5
01 -12.0  Different weight attached to the 0, 50, 100, 150, 200 30, 80, 130, 180, 230, 250
Gearbox
gearbox [g]
02 -12.0  Different gearbox ID [machine ID] 05,08, 13 00, 02, 11
00 12.0  Different rotation speed [krpm] 6, 10, 14, 18, 22 2,4,8,12, 16, 20, 24, 26
01 12.0  Different microphone location A,B,C,D E,F, G H
Bearing [location of the mic.]
02 12.0  Mixing of different factory noise A, B C
[factory noise index]
00 -6.0  Different operation velocity [mm/s] 300, 500, 700, 900, 1100 100, 200, 400, 600, 800,
1000, 1200, 1300
Sli . 01 -3.0 Different acceleration [m/sQ} 0.03, 0.05, 0.07, 0.09, 0.11 0.01, 0.02, 0.04, 0.06, 0.08,
ide rail
0.10,0.12,0.14
02 -12.0  Mixing of different factory noise A,B C
[factory noise index]
00 0.0 Different open/close operation 00, 01 02, 03
patterns [pattern index]
Valve 01 0.0 Different number and location of open (no panels), bs-c b-c (back closed), s-c (side
panels [panel locations] (back-side closed) closed)
02 0.0 Different number of valves (v1 04), (v1 05), (v2 04), (v2 (v1 04, v204), (vl 04, v2 05),

[(valvel pattern index, valve2
pattern index)]

05)

(v1 05, v2 04), (v1 05, v2 05)

Table 2: Number of samples in each section

Source domain Target domain

normal anomaly | normal anomaly
Train 990 0 10 0
Test 50 50 50 50

3. RELATION TO MIMII DUE AND TOYADMOS2

While MIMII DUE and ToyADMOS2 were developed for domain
adaptation tasks, MIMII DG in this paper is for domain generaliza-
tion tasks. As described in Sec. 1, the domain generalization tech-
niques are promised for handling domain shifts that domain adap-
tation techniques may not be applicable. We created a new dataset
dedicated to the domain generalization tasks because the dataset for
domain generalization tasks and domain adaptation tasks should be
different in some points. We included these points as three main
features that characterize differences from MIMII DUE and Toy-
ADMOS2.

¢ The number of values the domain shift parameter (a param-
eter that causes domain shift) takes has increased to at least
three for each type of domain shift. This change is crucial
because domain generalization techniques may require mul-

tiple sets of data obtained from different domain shift param-
eter values to generalize the model [20]. For example, for the
velocity shift in Slide rail, we increased the number of values
of the velocity from four in MIMII DUE to 13 in MIMII DG.
Also, with the increased number of sets, users can adjust the
difficulty of the generalization task.

Domain shifts that can be difficult to detect are introduced.
As described in Sec. 1, domain generalization techniques are
preferred for domain shifts that can be unnoticed. Therefore,
we introduced difficult-to-detect domain shifts such as dif-
ferences in states of a machine operating in the background.

Domain shift parameters become easier to access and uti-
lize. To generalize the model, not only the sound data but
additional information such as the domain shift parameters
and other attributes can be useful. Therefore, easy access to
these additional information is crucial. Unlike MIMII DUE,
we specified domain shift parameters in file names and at-
tribute files for both the source and target domain. With do-
main shift parameters in the target domain, users can evalu-
ate the detection performance for each value of the domain
shift parameter.
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4. EXPERIMENT

In this section, we use MIMII DG to benchmark the domain gener-
alization performance of two baseline systems.

4.1. Baseline systems

We used two ASD systems for benchmarking; an autoencoder-
based system and a MobileNetV2-based system. These systems
are provided as the baseline systems in Task 2 of the DCASE
2022 Challenge, and Python implementations of the systems
are available at https://github.com/Kota-Dohi/
dcase2022_task2_baseline_ae for the autoencoder-
based system and https://github.com/Kota-Dohi/
dcase2022_task2_baseline_mobile_net_v2 for the
MobileNetV2-based system.

The autoencoder-based system is often used as an unsupervised
ASD system. Sound data were first converted to log-Mel spectro-
gram with a frame size of 1024, a hop size of 512, and 128 Mel bins.
Five frames with four overlappings were successively concatenated
to generate 640-dimensional input feature vectors. The model had
four linear layers with 128 dimensions for the encoder, one bottle-
neck layer with eight dimensions, and four linear layers with 128
dimensions for the decoder. The model was trained to minimize the
error between the input feature vector x and the reconstruction x’.
We trained the model for 100 epochs using the Adam optimizer [21]
with a learning rate of 0.0001 and a batch size of 128. The anomaly
scores were calculated by the averaged reconstruction error.

The MobileNetV2-based system uses an auxiliary task to im-
prove the detection performance of an unsupervised ASD system
[22,23]. 64 frames with 48 overlappings were successively con-
catenated to generate input feature vectors. For the model, we used
a MobileNetV2 [24] with a multiplier parameter of 0.5. The model
was trained to classify section IDs for each machine type. We
trained the model for 20 epochs using the Adam optimizer with a
learning rate of 0.0001 and a batch size of 128. The anomaly scores
were calculated by the averaged negative logit of the predicted prob-
abilities for the correct section.

4.2. Metric

We used the area under the receiver operating characteristic curve
(AUC) for evaluation. Because the domain generalization task re-
quires detecting anomalies even when the occurance of domain
shifts can be difficult to detect, the anomaly detector is expected
to work with the same threshold regardless of the domain. There-
fore, we calculated the AUC using both the source and target do-
main data. Also, to evaluate the anomaly detection performance for
each domain, the AUC was computed for each domain. The AUC
for each domain, section, and machine type was calculated as

Ng Nt

SO T H A () = Aoz)), (D)

i=1j=1

N N

where n represents the index of a section, d € {source, target}
represents a domain, and () returns 1 when z > 0 and O other-
wise. Ag(x) is the anomalous score of a sound clip x, where 0 is

N o
the parameters of the system. Here, {x; },_% is normal test clips in

s . Nt . .
the domain d in the section n and {a:;r },24 is anomalous test clips
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Table 3: AUC (%) of each domain for each section.

Autoencoder MobileNetV2

IS\;Izltciillllan;ype / source target source target
00 84.69 39.35 71.07 62.13

Fan 01 71.69 44.74 76.26 35.12
02 80.54  63.49 67.29 58.02

00 64.63  64.79 63.54 67.02

Gearbox 01 67.66  58.12 66.68 66.96
02 75.38  65.57  80.87 43.15

00 57.48 63.07  67.85 60.17

Bearing 01 71.03 61.04 59.67  64.65
02 42.34 5291 61.71 60.55

00 81.92  58.04 87.15 80.77

Sliderail 01 67.85  50.30 49.66 32.07
02 86.66  38.78 72.70 32.94

00 54.24  52.73 75.26 43.60

Valve 01 50.45  53.01 54.78 60.43
02 51.56 43.84 76.26 78.74

Average 67.21  53.99 68.72 56.42

in the section 7 in the machine type m. N, is the number of nor-
mal test clips in the domain d and N, is the number of anomalous
test clips in the section n.

4.3. Results

Baseline results are shown in Table 3. On average, the AUC for
the target domain data was lower than the source domain data
at 13.2% with the autoencoder-based system and 12.3% with the
MobileNetV2-based system. In some sections, the AUC of the
target domain was slightly higher than that of the source domain.
This could be because the target domain data happened to be sim-
ilar to the source domain data of other sections. Overall, the fact
that models trained with the source-domain tended to show lower
performance for the target data indicate that there is a significant
difference between the source-domain data and the target-domain
data. This suggests that domain shift scenarios have been success-
fully reproduced. Thus, the dataset is useful for benchmarking the
performance of domain generalization techniques.

5. CONCLUSION

We presented a new dataset, MIMII DG, which was developed
for benchmarking domain generalization techniques for ASD. The
dataset has normal and anomalous operating sounds of five differ-
ent types of industrial machines with domain shifts. Experimental
results using two ASD systems demonstrate that the detection per-
formance significantly degrades for the target domain.
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