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ABSTRACT

We present the task description and discussion on the results
of the DCASE 2022 Challenge Task 2: “Unsupervised anomalous
sound detection (ASD) for machine condition monitoring apply-
ing domain generalization techniques”. Domain shifts are a critical
problem for the application of ASD systems. Because domain shifts
can change the acoustic characteristics of data, a model trained in
a source domain performs poorly for a target domain. In DCASE
2021 Challenge Task 2, we organized an ASD task for handling do-
main shifts. In this task, it was assumed that the occurrences of
domain shifts are known. However, in practice, the domain of each
sample may not be given, and the domain shifts can occur implic-
itly. In 2022 Task 2, we focus on domain generalization techniques
that detects anomalies regardless of the domain shifts. Specifically,
the domain of each sample is not given in the test data and only one
threshold is allowed for all domains. Analysis of 81 submissions
from 31 teams revealed two remarkable types of domain general-
ization techniques: 1) domain-mixing-based approach that obtains
generalized representations and 2) domain-classification-based ap-
proach that explicitly or implicitly classifies different domains to
improve detection performance for each domain.

Index Terms— anomaly detection, acoustic condition monitor-
ing, domain shift, domain generalization, DCASE Challenge,

1. INTRODUCTION

Anomalous sound detection (ASD) [1–7] is the task of identify-
ing whether the sound emitted from a target machine is normal or
anomalous. Automatic detection of mechanical failure is essential
in the fourth industrial revolution, which involves artificial intel-
ligence (AI)–based factory automation. Prompt detection of ma-
chine anomalies by observing sounds is useful for machine condi-
tion monitoring.

One challenge regarding the application scope of ASD systems
is that anomalous samples for training can be insufficient both in
number and type. In 2020, we organized the fundamental ASD
task in Detection and Classification of Acoustic Scenes and Event
(DCASE) Challenge 2020 Task 2 [8]; “unsupervised ASD” that
was aimed to detect unknown anomalous sounds using only normal
sound samples as the training data [1–7]. For the wide spread appli-
cation of ASD systems, advanced tasks such as handling of domain
shifts should be tackled. Domain shifts are differences in acoustic

characteristics between the source and target domain data caused by
differences in a machine’s operational conditions or environmental
noise. Because these shifts are caused by factors other than anoma-
lies, the detection performance of models trained with the source
domain data can degrade for the target domain data. Therefore,
in 2021, we organized DCASE Challenge 2021 Task 2 [9], “un-
supervised ASD under domain shifted conditions” that focused on
handling domain shifts using domain adaptation techniques.

The task in 2021 involved the use of domain adaptation tech-
niques under two assumptions. First, all domain shifts have been
detected in advance, and the domain of each sample is known. Sec-
ond, the domain shifts do not occur too frequently for the model to
adapt. However, these assumptions may not hold for certain real-
world scenarios. For example, a machine’s background sound can
be affected by various sound sources surrounding the machine, and
it can be difficult to identify the cause of changes and attribute the
changes to the domain shift. Also, because the operational condi-
tions of the machine can change within a short period, adapting the
model every time can be too costly. Therefore, methods have to be
investigated such that the detection of domain shifts is unnecessary
and frequent occurrences of domain shifts can be handled.

To solve the problem described above, we designed DCASE
challenge 2022 Task 2 “Unsupervised Detection of Anomalous
Sounds for Machine Condition Monitoring Applying Domain Gen-
eralization Techniques”. This task is aimed at developing domain
generalization techniques to handle domain shifts. The task in-
volves the use of domain generalization techniques so that the de-
veloped ASD systems do not require detection of the domain shifts
or adaptation of the model. Specifically, to evaluate the generaliza-
tion performance, the domain of each sample is not provided in the
test data. To enhance generalization of the model, attributes that
caused domain shifts are also provided in the training data.

We received 81 submissions from 31 teams. By analyzing
these submissions, we found two types of domain generalization
techniques: 1) domain-mixing-based approach and 2) domain-
classification-based approach. The domain-mixing-based approach
aims at obtaining generalized representations across domains by
mixing data from different domains. In contrast, the domain-
classification-based approach differentiates different domains so
that the model can be specialized for each domain.
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2. UNSUPERVISED ANOMALOUS SOUND DETECTION
APPLYING DOMAIN GENERALIZATION TECHNIQUES

Let the L-sample time-domain observation x ∈ RL be an audio
clip that includes a sound emitted from a machine. The ASD task
is a task to determine whether a machine is in a normal or anoma-
lous state using an anomaly score Aθ(x) calculated by an anomaly
score calculator A : RL → R with parameters θ. The machine
is determined to be anomalous when Aθ(x) exceeds a pre-defined
threshold ϕ as

Decision =

{
Anomaly (Aθ(x) > ϕ)
Normal (otherwise). (1)

The primary difficulty in this task is to train A with only normal
sounds. This is because anomalies are rarely obtained in practice.

Domain-shift is another major issue in real-world applications.
Domain shifts mean a difference in conditions between training and
testing. The conditions are machine’s operational conditions such
as its speed, load, and temperature, or the environmental conditions
such as the type of environmental noise, level of the noise, and loca-
tion of the microphone. Differences in these conditions change the
distribution of data and degrades the detection performance. Let
us define two domains: source domain and target domain, where
the source domain is the original condition with enough training
clips and the target domain is another condition with zero or a few
training clips. Also, let DS , DT , DSA, and DTA be the distribu-
tions of x under the normal condition in the source domain, normal
condition in the target domain, anomalous condition in the source
domain, and anomalous condition in the target domain, respectively.

The task in DCASE 2021 Task 2 involved two tasks. One was
to detect anomalies in the source domain: determine whether xs is
from DS or DSA using an anomaly score calculator Aθs(x) and a
threshold ϕs. The other was detection in the target domain: whether
xt is generated from DT or DTA using an anomaly score calcula-
tor Aθt(x) and a threshold ϕt. The task was set to develop domain
adaptation techniques so that the detection performance on the tar-
get domain can be improved by adaptation on the model trained
with the source domain data. Although this problem setting as-
sumes that the domain (source/target) of each sample is known, in
practice, the detection of domain shifts can be difficult and the do-
main may not be available. Also, the use of domain adaptation tech-
niques can be too costly if the domain shifts occur too frequently.

We show four types of real-world scenarios for these problems.
Domain shifts due to differences in machine’s conditions
Characteristics of a machine sound can change due to changes in
the machine’s operational conditions. Although these shifts can be
detected, if these conditions change within a short period of time, it
can be too costly to adapt the model every time.
Domain shifts due to differences in environmental conditions
Because characteristics of background noise can be affected by var-
ious factors, it is difficult to detect these shifts. Therefore, a model
that is unaffected by these shifts is desirable.
Domain shifts due to maintenance
Characteristics of a machine sound can change after maintenance
or parts replacement. Though these shifts can be detected, adapting
the model every time can be costly.
Domain shifts due to differences in recording devices
In real-world scenarios, many microphones are installed at different
locations, and these microphones may be from different manufac-
turers. Although these shifts can be detected, adapting the model

for each location or microphone can be too costly.
As a possible solution to handle these problems, domain gener-

alization techniques should be investigated. Domain generalization
techniques for ASD aims at detecting anomalies from different do-
mains with a single threshold. These techniques, unlike domain
adaptation techniques, do not require detection of domain shifts or
adaptation of the model in the testing phase. Therefore, domain
generalization techniques can be used for handling domain shifts
that are difficult to detect or too costly to adapt.

The DCASE 2022 Task 2 is set to develop domain generaliza-
tion techniques for ASD. Because the domain generalization tech-
niques are expected to work regardless of the domains, the domain
of each sample is not given in the test data. The task is to determine
if x is from the normal condition DS ∪ DT or anomalous condi-
tion DSA ∪ DTA using an anomaly score calculator Aθ(x) and ϕ.
Because the differences in operational or environmental conditions
make DS ̸= DT , the decision must be executed without being af-
fected by the differences between different domains.

3. TASK SETUP

3.1. Dataset

We used ToyADMOS2 [10] and MIMII DG [11] to generate the
dataset. The dataset consists of normal/anomalous operating sounds
from seven types of toy/real machines (ToyCar, ToyTrain, fan, gear-
box, bearing, slide rail, and valve).

Each recording is a single-channel and 10-sec-long audio with
a sampling rate of 16 kHz. We mixed machine sounds recorded
at laboratories and the environmental noise recorded at real-world
factories to create the training/test data. Details of the recording
procedure can be found in [10] and [11].

In this dataset, Machine type means the type of machine. Sec-
tion is defined as a subset of the data within a machine type and
corresponds to a type of domain shift scenario.

We provide three datasets: development dataset, additional
training dataset, and evaluation dataset. The development
dataset consists of three sections (Sections 00, 01, and 02), which
are sets of the training and test data. Each section provides (i) 990
normal clips from a source domain for training, (ii) 10 normal clips
from a target domain for training, (iii) 100 normal clips and 100
anomalous clips from both domains for the test. We provided do-
main information (source/target) in the test data for the convenience
of participants. Attributes represent the operational or environmen-
tal conditions, e.g. velocity of slide rail and level of noise (SNR)
mixed in fan data. The additional training dataset provides train-
ing clips for three sections (Sections 03, 04, and 05). Each section
consists of (i) 990 normal clips in a source domain for training and
(ii) 10 normal clips in a target domain for training. Attributes are
also provided. The evaluation dataset provides test clips for three
sections (Sections 03, 04, and 05). Each section consists of 200 test
clips, none of which have a condition label (i.e., normal or anomaly)
or the domain information. Attributes are not provided. The main
difference from our task in 2021 is that the domain information is
not given in the evaluation dataset. Thus, the participants have to
develop a system that performs well regardless of the domains.

3.2. Evaluation metrics

This task is evaluated with the area under the receiver operating
characteristic (ROC) curve (AUC) and the partial AUC (pAUC).
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The pAUC is calculated as the AUC over a low false-positive-rate
(FPR) range [0, p]. In this task, we used p = 0.1.

Because the domain generalization task requires detecting
anomalies using the same threshold between domains, the pAUC
has to be calculated for each section, not for each domain. We cal-
culated the AUC for each domain and pAUC for each section as

AUCm,n,d =
1
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n
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where P−
n = ⌊pN−

n ⌋, m represents the index of a machine type, n
represents the index of a section, d = {source, target} represents
a domain, ⌊·⌋ is the flooring function, and H(x) returns 1 when
x > 0 and 0 otherwise. Here, {Aθ(x

−
i )} and {Aθ(x

+
j )} are sets of

anomaly scores of normal and anomalous test clips, ordered in de-
scending power, respectively. N−

d is the number of normal test clips
in domain d, N−

n and N+
n are the number of normal and anomalous

test clips in section n, respectively. We calculated AUCm,n,d to
evaluate the contribution of each domain to AUCm,n, as it holds
that AUCm,n =

∑
d AUCm,n,d if N−

source = N−
target.

The official score Ω for ranking submitted systems is given by
the harmonic mean of the AUC and pAUC scores over all machine
types and sections as follows:

Ω = h
{
AUCm,n,d, pAUCm,n |

m ∈ M, n ∈ S(m), d ∈ {source, target}} , (4)

where h {·} represents the harmonic mean (over all machine types,
sections, and domains), M represents the set of machine types, and
S(m) represents the set of sections for machine type m.

Participants are required to submit the anomaly score and nor-
mal/anomaly decision result of each test clip. Even though the offi-
cial score can be calculated with only the anomaly scores, decision
results are also required because we must determine the threshold
in real-world applications.

3.3. Baseline systems and results

The task organizers provide an autoencoder (AE)-based and a
MobileNetV2-based baseline systems.

The AE-based system calculates the anomaly score as the re-
construction error of the sound. To determine the threshold, we
assume that anomaly scores of normal sound follows a gamma dis-
tribution. The parameters of the gamma distribution are estimated
from the anomaly scores of normal sound in the training data, and
the threshold is calculated by the 90th percentile of the gamma dis-
tribution. A test clip is determined to be anomalous if its anomaly
score exceeds the threshold.

In the MobileNetV2-based system [12–14], classifiers such as
the MobileNetV2 [15] are trained to identify from which section
the observed signal was generated. The anomaly score is calculated
as the averaged negative logit of the predicted probabilities for the
correct section. The threshold is calculated in the same manner as
in the AE-based baseline.

Tables 1 and 2 show the AUC and pAUC for the two base-
lines. Because the results produced with a GPU are generally non-
deterministic, the average and standard deviations from five inde-
pendent trials are also shown in the tables.

Table 1: Results of the AE-based baseline
Section AUC [%] pAUC [%]

Source Target

ToyCar
00 86.42 ± 1.10 41.48 ± 6.11 51.31 ± 1.34
01 89.85 ± 1.39 41.93 ± 5.36 54.08 ± 1.84
02 98.84 ± 0.52 26.50 ± 13.52 52.79 ± 1.04

ToyTrain
00 67.54 ± 0.97 33.68 ± 3.12 52.72 ± 1.63
01 79.32 ± 0.82 29.87 ± 5.62 50.64 ± 2.33
02 84.08 ± 0.38 15.52 ± 14.90 48.33 ± 2.33

Bearing
00 67.85 ± 19.61 60.17 ± 7.24 54.41 ± 5.72
01 59.67 ± 12.67 64.65 ± 12.63 55.09 ± 3.36
02 61.71 ± 33.52 60.55 ± 35.10 64.18 ± 19.79

Fan
00 84.69 ± 1.74 39.35 ± 9.35 59.95 ± 2.00
01 71.69 ± 0.69 44.74 ± 1.79 51.12 ± 0.55
02 80.54 ± 1.42 63.49 ± 2.36 62.88 ± 1.55

Gearbox
00 64.63 ± 0.88 64.79 ± 1.06 60.93 ± 2.31
01 67.66 ± 0.51 58.12 ± 0.38 53.74 ± 0.56
02 75.38 ± 0.75 65.57 ± 0.82 61.51 ± 0.69

Slide rail
00 81.92 ± 0.81 58.04 ± 1.22 61.65 ± 1.22
01 67.85 ± 0.53 50.30 ± 1.25 53.06 ± 0.53
02 86.66 ± 0.39 38.78 ± 5.13 53.44 ± 1.18

Valve
00 54.24 ± 0.68 52.73 ± 1.93 52.15 ± 0.25
01 50.45 ± 3.67 53.01 ± 1.73 49.78 ± 0.19
02 51.56 ± 2.89 43.84 ± 1.11 49.24 ± 0.65

Table 2: Results of the MobileNetV2-based baseline
Section AUC [%] pAUC [%]

Source Target

ToyCar
00 47.40 ± 7.22 56.40 ± 4.11 49.96 ± 2.56
01 62.02 ± 11.07 56.38 ± 11.31 50.92 ± 2.52
02 74.19 ± 7.94 45.64 ± 11.32 56.51 ± 6.07

ToyTrain
00 46.02 ± 12.21 49.41 ± 15.14 50.25 ± 1.49
01 71.96 ± 5.72 45.14 ± 13.66 52.97 ± 4.61
02 63.23 ± 25.60 44.34 ± 21.50 51.54 ± 4.34

Bearing
00 67.85 ± 19.61 60.17 ± 7.24 54.41 ± 5.72
01 59.67 ± 12.67 64.65 ± 12.63 55.09 ± 3.36
02 61.71 ± 33.52 60.55 ± 35.10 64.18 ± 19.79

Fan
00 71.07 ± 19.84 62.13 ± 12.50 55.40 ± 11.29
01 76.26 ± 4.95 35.12 ± 13.38 52.14 ± 4.08
02 67.29 ± 10.34 58.02 ± 7.46 65.14 ± 1.09

Gearbox
00 63.54 ± 9.46 67.02 ± 13.50 62.12 ± 11.66
01 66.68 ± 12.29 66.96 ± 8.92 56.85 ± 4.47
02 80.87 ± 7.85 43.15 ± 16.12 50.62 ± 7.73

Slide rail
00 87.15 ± 2.71 80.77 ± 4.53 71.57 ± 5.28
01 49.66 ± 30.46 32.07 ± 46.84 48.21 ± 2.73
02 72.70 ± 11.67 32.94 ± 19.77 49.69 ± 1.63

Valve
00 75.26 ± 4.84 43.60 ± 14.38 55.37 ± 5.86
01 54.78 ± 5.37 60.43 ± 5.08 54.69 ± 3.87
02 76.26 ± 1.02 78.74 ± 2.64 85.74 ± 0.08

4. CHALLENGE RESULTS

4.1. Results for evaluation dataset

We received 81 submissions from 31 teams, and 22 teams outper-
formed the MobileNetV2-based baseline in the official score. In
Figure 1, the harmonic means of the AUCs are shown for top 10
teams [16–25]. Although the AUCs change drastically between dif-
ferent machine types and teams, these highly ranked teams outper-
formed the baselines for most of the machine types. It is worth not-
ing that, for these teams, the source-domain AUC did not correlate
with the official rank (correlation coefficient was −0.033) while the
target-domain AUC did (correlation coefficient was −0.862). This
indicates that handling domain shifts and generalizing the model
was the key to better ranks among highly ranked teams.

We find that domain generalization approaches adopted by the
participants can be categorized into two types: domain-mixing-
based approach and domain-classification-based approach. These
methods achieved the aim of the task by generalizing the model
using data with different attributes. Figure 2 shows the aver-
age source-domain and target-domain AUC of the top 20 teams.
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Figure 1: Evaluation results of top 10 teams in the ranking. Average source-domain AUC (Top) and target-domain AUC (bottom) for each
machine type. Label “A” and “M” on the x-axis denote AE-based and MobileNetV2-based baselines, respectively.
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Figure 2: Average source-domain AUC and target-domain AUC of
the top 20 teams. “classification” denotes teams that used domain-
classification-based approaches, “mix-up” denotes teams that used
domain-mixing-based approaches, and “none” denotes teams that
did not use particular domain generalization techniques.

Domain-classification-based approaches outperformed other ap-
proaches especially for the target domain. However, these ap-
proaches may be specialized for the types of target domain data
provided in both the training and test data, and thus may not per-
form well for those not included in the train data. We describe the
details in the following.

4.2. Domain-mixing-based approach

Domain-mixing-based approach extracts common representations
between domains. These include batch mixing that use data from
both domains in a batch to train a model [17, 23], Mixup [26] that
synthesizes data from both domains to obtain intermediate repre-
sentations [17, 23, 25, 27], and data augmentation techniques to ob-
tain robust representations [24]. These techniques use the target
domain data to expand the normal conditions for the model so that
the model can be generalized to better handle domain shifts. How-
ever, as shown in Figure 2, they have been outperformed by domain-
classification-based approaches. This can be that, for the Mixup and
data augmentation, synthesized data was not useful for representing
the target domain data. One future direction can be on obtaining
meaningful synthetic representations with the aid of external infor-
mation such as the attribute information.

4.3. Domain-classification-based approach

Domain-classification-based approach distinguishes the source and
target domain data to obtain better detection performance for each
domain. The 1st and 6th place teams [16, 21] used distances be-
tween the embedding of a domain and that of the test data to cal-
culate anomaly scores. Because the domain of each sample can be
estimated by the domain with shorter distance, this approach can
be regarded as implicitly classifying the domain of each sample.
The 2nd, 3rd, 4th, and 5th place teams [17–20] explicitly trained a
classifier to distinguish the attributes or the domains. The 5th place
teams trained an attribute classifier and a section classifier so that
both the domain-wise information from the attribute classifier and
the domain-independent information from the section classifier can
be obtained.

As shown in Figure 2, the domain-classification-based ap-
proach outperformed the domain-mixing-based approach. This can
be because the normal conditions are defined for each specific do-
main, unlike the domain-mixing-based approach that defines nor-
mal conditions over all domains. However, this approach assumes
that the target domain data in the train data includes all types of the
target domain data in the test data. If the target domain data in the
test data contains too many types of data not included in the train
data, the classifier may fail to distinguish domains, which can de-
grade the detection performance. Therefore, further investigation is
needed to examine the ability of this approach to handle completely
unseen target domain data.

5. CONCLUSION

This paper presented an overview of the task and analysis of the
solutions submitted to DCASE 2022 Challenge Task 2. To handle
domain shifts that occur implicitly, the task was dedicated to de-
veloping domain generalization techniques. The organization of
the task revealed two approaches that can be useful for domain
generalization task: domain-mixing-based approach and domain-
classification-based approach. For the former approach, obtaining
more meaningful synthetic representations from multiple domains
is left for future works. For the latter approach, future works can fo-
cus on analyzing the effect of this approach on completely unseen
types of target domain data.
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