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ABSTRACT

In noisy workplaces, the audibility of acoustic alarms is essential
to ensure worker safety. In practice, some criteria are required in
international standards to make sure that the alarms are “clearly au-
dible”. However, the recommendations may lead to overly loud
alarms, thereby exposing workers to unnecessary high sound lev-
els, especially when ambient sound levels are high themselves.
For this reason, it appears necessary to properly assess the audi-
bility of alarms at design stage. Existing psychoacoustical meth-
ods rely on repeated subjective measurements at different sound
levels and therefore require time-consuming procedures. In addi-
tion, they must be repeated each time the alarm or sound environ-
ment changes. To overcome this issue, we propose a data-driven
approach to estimate the audibility of new alarm signals without
having to test each new condition experimentally. In this study, a
convolutional neural network model is trained to perform a binary
classification task on short sound clips labeled with the outcomes
of psychoacoustical experiments. We propose a proof of concept
of this approach and analyze its performance depending on the data
used at training and the temporal context used by the networks to
predict the audibility of the alarm.

Index Terms— Acoustic Scene Classification, Warning sig-
nals, Psychophysics, Machine learning

1. INTRODUCTION

The audibility of acoustic signals indicating a danger – for instance,
the reverse alarm of a construction machine – is essential to ensure
the safety of workers and to prevent the risk of accidents. The in-
ternational standard dedicated to auditory danger signals for public
and work areas requires for the alarms to be “clearly audible” [1]. In
order to meet this requirement, several criteria related to the ambi-
ent noise levels are proposed. In particular an overall level criterion
imposes a minimum signal-to-noise ratio (SNR) of 15 dB. This rec-
ommendation is questionable on two counts. First, the proposed
criteria appear to lead in practice to excessive sound levels when
the ambient noise levels are high. Żera and Nagórski have found
that, when asking listeners to adjust the level of alarms so that they
are judged to be clearly audible, the required SNR varies continu-
ously from 15 to −2 dB as the noise level increases from 60 dB to
90 dB [2]. An SNR of 15 dB could therefore be too conservative
or even harmful at high noise levels. Second, there is no scientific
or formal definition of what ”clearly audible” means. We can easily
understand the difference between a sound that is simply detectable
and another, qualified as clearly audible. The alarm must not only
be perceptible but also ”loud” enough to provide an effective warn-

ing of danger. This judgment can however vary greatly from one
individual to another. It should also be noted that such consider-
ation is dependent on the sound environment in which the alarm
occurs.

In the presence of background noise, our ability to detect a
given sound is reduced. It translates into an increase in the audi-
bility threshold of the target sound, meaning that the level at which
the sound is just audible is higher in noise than in silence [3, 4].
The noise in question is called masker, and we refer to the audibil-
ity threshold when a masker is present as the masked threshold. The
masking mechanism is the basis for current alarm design methods.
With the understanding that the alarm level must be well above the
masked threshold to ensure reliable audibility, it has been suggested
that alarms should exceed the masked threshold by 10 to 15 dB [5].
This recommendation is also included in the standard [1]. Masked
thresholds can be measured experimentally [6], but such approach
is not the most convenient, since a psychoacoustical experiment re-
quires the involvement of multiple human subjects, and measuring
an audibility threshold implies covering a range of different sound
levels, which can be time-consuming. Furthermore, the measure-
ments strongly depend on the acoustic properties of the sounds.
Consequently, the experiment must be repeated for any new con-
dition of interest such as a new alarm signal, or different ambient
noise type or level. In response to this problem, some models have
been developed to predict masked thresholds [7, 8]. However, these
are based on the explicit estimation of the masked thresholds, and
therefore only efficient in well-controlled conditions.

The main motivation of our work is to propose a model capable
of accurately estimating the audibility of acoustic alarms in noise.
We intend this model to be applicable to a large variety of sound
environments, including fluctuating noises and different types of
warning signals. In that regard, we suggest that a deep learning
approach, which is data-driven, would be suitable. A few studies
have already begun to pave the way for connecting psychophysics
and deep learning methods, for instance, by implementing a psy-
chophysically inspired methodology for model evaluation [9]. More
recently, in the context of handwritten document transcription, a
loss function was reformulated to account for perceptual data [10].
The authors used it to train a CNN to perform character recognition
and obtained consistent and repeatable performance improvement
on standard datasets. In the field of audition, recent works have
replicated human perceptual judgments with a high level of likeness
in word recognition, genre recognition [11] and sound localization
in natural environments [12].

In this paper, we propose to adapt methods used in ambient
sound analysis [13, 14] to the specific topic of audibility assessment
of auditory alarms. To that end, we introduce a new dataset consist-
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ing of sound clips made up of auditory warning signals embedded in
noise labelled through psychoacoustical experiments. Based on this
dataset, we train a model to reproduce human judgment regarding
the audibility of the alarms.

2. METHOD

Ambient sound analysis is a broad field of research that encom-
passes several sub-areas such as Acoustic Scene Classification
(ASC) [15], Sound Event Dectection (SED) [16, 17], or audio tag-
ging [18]. Although our approach does not fully fit into any of these
categories, it does share certain aspects with some of them. First,
similarly to what is done in ASC and audio tagging, we want the
model to produce file-level estimations. Besides, the analysis fo-
cuses on the alarms, which are temporally localized sound events.
This is pretty similar to SED or tagging. Despite this, we are not di-
rectly interested in the ability of the model to detect the alarm. Yet,
if the model can predict that an alarm is audible, it gives an indica-
tion that the model did initially detect it. The opposite, however, is
not true. It is quite possible that the model predicts that an alarm is
not audible although it has detected the alarm itself.

To assess whether a particular alarm can be considered clearly
audible in a given environment, we propose to frame the problem
as a binary classification task. The proposed method uses 5.5-
second audio clips containing auditory warning signals embedded
in background noises as input. After extracting acoustical features
from these signals, we used a CNN to produce a binary estimate of
whether the alarm present in the clip is clearly audible or not. More
details about the audio clip generation and the annotation process
are provided in the next section.

3. PSYCHOACOUSTICAL DATA COLLECTION

The need for relatively large amounts of data with a sufficient vari-
ability is a well-known constraint associated with deep learning.
To develop our model with psychoacoustical data, no ready-to-use
dataset was available from external sources. Therefore, we had to
collect one. To do this, our choices were guided by two major con-
siderations. First, we had to find a way to collect the maximum
amount of data at the lowest time cost. Second, we still wanted to
keep the possibility of explaining all or part of our results within
the psychoacoustical framework. We decided to divide the psy-
choacoustical experiments in three parts. The first part is following
within-subject design, closer to psychoacoustical procedures. The
second and third parts follow lighter procedures and lower data col-
lection time cost. In this section, we describe the psychoacoustical
experiments that have been carried out to collect the dataset. The
dataset in this paper is a preliminary version used for a proof of
concept. The final dataset is expected to be larger.

3.1. Stimuli and material

Stimuli were made of short alarm sounds (between 0.243 and
1.763 s long) embedded in background noises. The alarms were
mostly synthetic signals, but some of them were clean record-
ings. Backgrounds were field recordings, taken to be industry-
related (factory, roadworks, construction) or captured in noisy pub-
lic spaces. Both alarms and noises were mono signals collected
from different sources, mainly the Freesound database [19], Big-
SoundBank [20], and to a lesser extent, a published set of medical
alarms [21] or self-recorded railway warning signals [22].

In the experiments, 5.5-second clips were generated, each con-
taining a background noise and a single alarm with a random onset
temporal location. The level of the noise varied between 60 dBA
and 80 dBA. The SNRs were all taken between −30 dB and +15 dB.
The stimuli were played at a sample rate of 44.1 kHz using an RME
Babyface Pro sound card, and presented over Beyerdynamic DT
770 Pro headphones calibrated with Larson Davis AEC101 artifi-
cial ear and Model 824 sonometer.

3.2. Procedure and datasets

Twelve volunteers aged from 18 to 43 and free of reported hearing
problems took part in this study. They came for multiple sessions of
one or two hours each. All the participants were compensated for
the time spent on the experiments. To evaluate the audibility, the
subjects were presented with a clip made up of an alarm embedded
in a background noise. At the end of the presentation, they had to
answer the question ”Was the alarm clearly audible?” by simply
clicking Yes or No. Three different experiments were carried out
and most of the subjects took part in each of the three experiments.
Each experiment served to collect a separate subset designed for a
specific purpose.

The first set consists of 6 audio clips, each declined in 2 differ-
ent noise levels (60 dBA and 80 dBA) and 10 SNRs linearly spaced
between −30 and +15 dB, making a total of 120 signals. In each
of the 6 clips, the alarm signals and backgrounds are different from
the other clips. All these stimuli have been annotated once by the
10 participants. As a result, it contains psychoacoustical data that
are quite close to what would have been obtained through a stan-
dard procedure, yet it is often recommended to make more than one
repetition per subject [1]. This set is the most controlled set and is
selected as the evaluation set. The data collection process on this
subset will eventually allow for further comparison with more stan-
dard psycho-acoustic experiments. The labels (0 or 1) have been
obtained by setting a 0.5 threshold on the proportion of ”Yes” across
participant answers. This subset is referred to as subA in the remain-
der of the paper.

The second set contains 1800 audio clips, made with the same
noises and alarms as in the first set, except that the 6 formerly used
alarm-noise combinations were avoided. As a consequence, there
was a total of 30 possible alarm-noise combinations. Six different
SNRs ([−25, −10, −5, 0, 5, 12.5] in dB) and six noise levels ([60,
64, 68, 72, 76, 80] in dBA) were used and uniformly distributed
among the clips. Each of the 1800 clips had a unique alarm onset
location. Ten participants were involved in this experiment. Each of
them listened to 180 clips. The distribution of the clips among sub-
jects was done in such a way that each subject listened to the same
number of clips per SNR and per noise level. No repetition was
made across subjects, meaning each stimulus has been annotated
just once. This subset is referred to as subB.

The data eventually collected in these experiments will be used
to form a large training subset. However, the third set introduced
in this paper is also composed of 1800 different clips. This is mo-
tivated by the desire to keep comparable size between this set and
subB. There are 70 alarms and 52 background noises in this set, all
different from the 6 used in the first and second sets. Two noise
levels were used (60 dBA and 80 dBA). There were 46 different
SNRs ranging from −30 to +15 dB with a step of 1 dB. Ten sub-
jects contributed to the annotation. Some of the conditions have
been randomly repeated among subjects, making a total of around
11500 annotation points. For clips with a single annotation point,
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the subject’s answer was kept as the final annotation. For clips with
multiple annotation points, the labels were derived by setting a 0.5
on the Yes-rate. We refer to this subset as subC.

Subsets subB and subC were used separately for development,
using 1440 training clips and 360 validation clips, which corre-
sponds to a 80%/20% ratio. The training/validation split was per-
formed randomly and kept fixed for all the experiments.

4. EXPERIMENTAL SETUP

4.1. Acoustic features

The signals were sampled at 44.1 kHz. The features we used are
mel-spectrograms with 64 coefficients. They were extracted using a
1024-sample short-time Fourier transform (STFT), with 50% over-
lap and a Hamming window.

We did explore the idea of using more perceptually relevant
representations such as cochleagrams [12] or spectro-temporal ex-
citation patterns [23]. However, preliminary experiments with these
features did not provide any significant performance improvement
in terms of accuracy on the development sets. Therefore, in this
paper we use only mel-spectrograms as input features.

For the experiments, the input representations were standard-
ized to zero mean and unit variance along mel frequency bins. The
standardization coefficients were computed over the whole training
set.

4.2. Convolutional Neural Network

The architecture of the CNN used in this paper is inspired by mod-
els used in SED [14] and Bird Audio Detection [13]. The model
is composed of 4 convolutional layers with [32, 64, 64, 128] filters
per layer. Each filter has a 3-by-3 receptive field. Each convolu-
tional layer is followed by ReLU activations and max pooling along
the frequency axis ([1, 4], [1, 4], [1, 2] and [1, 2], respectively).
The activation outputs from the last convolutional layer are stacked
along frequency axis [13]. Preliminary experiments with recurrent
layers did not lead to significant improvement. Therefore they are
not used in this paper. Instead, we directly operate 𝐿𝑝 aggregation
over the time axis on the stacked representations. 𝐿𝑝 aggregation
with 𝑝 = 2 was preferred over max pooling which is not differ-
entiable and may lead to instability [24]. In addition, it has been
shown to be more robust to variations in the relative duration of the
alarm compared to the clip length [25]. The aggregation layer is
followed by the classification layer that has one single neuron with
sigmoid activation. The neuron is intended to produce an activa-
tion which is close to 1 when the alarm present in the clip is clearly
audible, and close to 0 when the alarm is not clearly audible.

For training, back-propagation was performed using a binary
cross-entropy loss function and Adam optimizer [26] with a learn-
ing rate of 0.0001. To reduce overfitting, dropout was applied on the
outputs of all the convolutional layers with a rate of 0.25 and regu-
larization was employed by fixing a 0.0001 weight decay in Adam.
The model was trained for a maximum of 250 epochs and the epoch
giving the best accuracy on validation set was kept.

4.3. Model evaluation

For the experiments, the model was evaluated from the area under
the receiver operating characteristic curve (AUC) and the F1-score.

We trained the models with 10 randomized initializations. The met-
rics were computed on the outputs obtained with these 10 models.
We report the mean and 95% confidence intervals of the metrics.

5. RESULTS AND DISCUSSION

In this section, we report the two series of experiments that have
been conducted on the model. The first series of experiments fo-
cuses on the model performance depending on the data used at train-
ing. The second series of experiments assesses the potential effects
of the temporal context used in the model to predict the audibility.

5.1. Impact of the training data

Our first series of experiments investigates the performance of the
models trained on subB and subC. As described in Section 3.2, the
clips in subA and subB were made with the same alarms and back-
ground noises. For this reason, we expect the model to perform
better when it is trained on subB than on subC.

At first, the model was trained on subB or subC data while subB
validation data were used to select the model. Table 1 shows the
AUC and F1-score on development and test sets. As we can ob-
serve, performance on the test set is better when subB is used for
training. There are two potential causes for this. The difference in
performance can be due to the fact that the alarm signals and back-
grounds in subC are different from those in subB and in the test
set or to the fact the task addressed in subC is more difficult than
in subB (or both). We evaluated models trained on subC and vali-
dated on either subB or subC to verify this second hypothesis (see
Table 2). The results show a significant difference in performance
on development set depending on whether the model was validated
on subB or subC. The high development score when subC is used
for validation suggests that the model can be fitted to subC data,
which indicates that the task addressed in subC is in fact not more
difficult than in subB. However, the performance on test set shows
that the model gives better results on test data when the alarms and
background noises have been seen during training. This raises the
question whether collecting more training data with a larger set of
alarms and backgrounds can help to compensate for this perfor-
mance gap. If not, it would induce the need to see test alarms or
test backgrounds or both during training. In practice, such a sce-
nario would not be realistic. Despite the difference in performance,
it should be noted that when training on different alarms and back-
grounds, the model performance does not actually collapse.

Subset Development score Test score

subB
AUC
F1

94.4 ± 0.3
91.9 ± 0.3

95.3 ± 0.7
89.2 ± 1.6

subC
AUC
F1

78.9 ± 1.0
79.1 ± 1.2

87.9 ± 1.9
79.3 ± 2.4

Table 1: AUC and F1-scores on development and evaluation sets
with 95% confidence intervals. subB is used for validation.

5.2. Impact of the clip duration

The alarms that are present in the different clips have variable
lengths. Since the longest alarm is less than 1.8 s long, all the 5.5-
second clips contain both portions of noise alone and the whole
section where the alarm occurs. It is still to be determined whether
the model bases its predictions on the entire alarm or on a specific
region of the alarm. This region could be the onset, for instance.
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Validation set Development score Test score

subB
AUC
F1

78.9 ± 1.0
79.1 ± 1.2

87.9 ± 1.9
79.3 ± 2.4

subC
AUC
F1

94.4 ± 0.4
87.2 ± 0.4

88.3 ± 1.8
79.5 ± 2.0

Table 2: Performance of the model trained on subC with either subB
or subC used for validation.

Moreover, it is not sure whether it also relies on the information
present in the parts of the signal where there is no alarm. In this
second series of experiments, we are interested in observing how
the model uses the temporal context to produce estimations of the
audibility of the alarms.

The model was trained on subB since it resulted to better per-
formance in the previous experiment. We varied the duration of
the clips used to train the model. Four different durations were ex-
perimented: 5.5, 1.0, 0.5, and 0.1 seconds. For this, each input
representation was shortened to the desired length around the alarm
position. Every time, the model was tested on subA using all four
clip lengths. The results are reported in Table 3.

As a first observation, when tested with the same clip length as
the one used for training, the model shows relatively good perfor-
mance. This result is true whatever the clip length. However, the
model is only able to perform well for all test clip durations when
it is trained on 5.5-second clips. This result suggests that the model
needs temporal context at training time but not necessarily to make
predictions at inference time. Finally, when 5.5-second clips are
used for training, the performance of the model weakens slightly as
the duration of the test clips is reduced, though it is still quite high.
It would therefore be reasonable to train on long clips if the model is
then to make predictions over shorter time periods. These observa-
tions are based on the AUC. The-F1 score shows some unexplained
effects such as a lower value observed when the model is trained on
5.5-second clips and tested on 1-second clips. The investigation of
these effects may require a more detailed analysis.

0.1 0.5 1.0 5.5
AUC 88.6 ± 1.4 53.2 ± 11.1 51.8 ± 11.9 50.1 ± 7.5
F1 81.8 ± 1.6 36.0 ± 19.5 32.9 ± 20.6 32.2 ± 21.0
AUC 53.3 ± 13.2 92.1 ± 1.5 55.5 ± 14.9 50.1 ± 6.7
F1 44.4 ± 17.7 85.0 ± 1.3 41.9 ± 18.7 33.8 ± 20.2
AUC 43.9 ± 15.2 53.5 ± 13.5 89.5 ± 1.8 47.7 ± 6.0
F1 36.7 ± 15.5 45.5 ± 14.7 81.6 ± 1.6 40.6 ± 14.3
AUC 88.8 ± 6.0 92.3 ± 1.9 93.9 ± 1.6 95.0 ± 1.0
F1 75.3 ± 6.5 80.0 ± 5.7 75.7 ± 4.2 87.0 ± 1.2

0.1

0.5

1.0

5.5

Training
Test

Table 3: Performance on test set depending on the clip length used
for training and evaluation.

5.3. The model’s output as a psychometric value

As previously mentioned, psychoacoustical experiments are usually
conducted in a repeated measures design. For example, in order to
evaluate the audibility of an alarm through a Yes-No task, a common
approach consists in presenting same clip once or several times to
every participant. With such procedure, we can measure the pro-
portion of Yes responses over all trials. Then by varying a given
attribute of the stimulus, it is possible to establish a relationship
between this specific attribute and the subjects’ responses. Such a
relationship is called a psychometric function.
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Figure 1: Psychometric function of a clip from subA. The rate of
positive responses averaged across all participants as a function of
the SNR is represented by the plain curve. The dotted curve with
round markers shows the values taken by the last neuron.

For instance, consider the procedure described in Section 3.2
to collect data for subA. Different clips were generated from the 6
initial clips by varying the SNR and the noise level. By taking a
given clip at a single ambient noise level, we can represent the evo-
lution of the proportion of Yes responses as the SNR increases. This
approach is quite different from what we do when we train a CNN
to perform a binary classification task. Indeed, we use binary labels
for training. This means that the model is trained to produce out-
puts as close to 1 as possible when the alarm in the clip is judged
to be clearly audible and close to 0 when the alarm is not clearly
audible. However, information such as an actual Yes-rate is totally
absent from the data seen by the model. As a consequence, we do
not necessarily expect a match between the output of the model and
a psychometric function when varying the SNR of the alarm present
in a clip. Yet, we did try to observe the output of the model when the
inputs were the same clips of subA with different SNRs. The acti-
vation of the last neuron was found to roughly follow the evolution
of what could be interpreted as a psychometric curve. This result
opens up analytical perspectives for future studies. An example is
shown in Figure 1.

6. CONCLUSION

In this paper, we proposed a proof of concept of a new approach
to assess the audibility of acoustic alarms. We presented an experi-
mental procedure that was specifically designed to collect a dataset
with perceptual annotation. This dataset was used to develop a
model that gave auspicious results on a binary classification task.
Both the influence of the training data and the importance of the
temporal context have been investigated. Our results showed that
it is possible to predict the audibility of acoustic alarms in relative
accordance with human perception, even if training was made on
a dataset that was collected using a much lighter procedure than
usual psychoacoustical tests. However, we are aware of the lack
of a baseline to compare the results of the present work, and there-
fore plan to collect new perceptual data with different annotators
whose ”performance” will serve as a basis for comparison with the
model. Lastly, the psychoacoustical experiments presented in this
article are part of a broader experimental method that includes the
numerical rating of the audibility and a detection task that have not
been detailed here. The data collected on this occasion will be used
in future developments.
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