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ABSTRACT

In this study, we propose a model training method for polyphonic
sound event detection (polyphonic SED) that prioritizes rare event
label frames during multiple overlapping sound events. Multi-label
classification typically utilized in polyphonic SED often fails to
recognize such events. To overcome this problem, the proposed
method is designed to represent event overlaps of rare labels easily
without a complicated network structure. During model training,
we periodically apply either binary cross-entropy loss (BCE) for
multi-label classification or softmax cross-entropy loss (Softmax-
CE) for multi-class classification. When multi-class classification is
performed using Softmax-CE, the labels of the overlapping frames
are reconstructed from the target labels to include the rarest ones
and exclude the frequent ones. The model was evaluated on strongly
labeled AudioSet data, from which only human voice segments
were extracted. The proposed method achieves an improvement of
0.23 percentage points over the baseline, which only used the BCE,
in terms of the mean average precision. In particular, the proposed
method outperforms the baseline with respect to rare labels, with
an average precision of 1.18 percentage points. The experimental
results also demonstrate the effectiveness of the proposed method
for both overlap of sound events and rare labels.

Index Terms— Polyphonic sound event detection, multi-label
classification, multi-class classification

1. INTRODUCTION

Due to the advancements in deep learning, sound event detection
(SED), which is a technique used for estimating the type and inter-
val (onset and offset times) of sound events present in an acoustic
signal, has recently attracted attention. Additionally, shared mobil-
ity services have become ubiquitous in many cities worldwide. For
safety, they require surveillance of both the drivers and passengers
inside the vehicles [1, 2]. In an in-vehicle surveillance system, var-
ious sound events must be detected to understand what is occurring
inside the vehicle. Therefore, this study focused on human voice
SED for an in-vehicle surveillance system based on human voice
signals.

Some DCASE competitions [3, 4] have previously dealt with
the sound of human speech or crying babies, where target sounds
are often overlapped, whereas real-world data often suffer from
extreme imbalances between classes as well as overlapping sound
events. For example, as shown in Fig. 1, in the strongly labeled Au-
dioSet [5] dataset annotated using real-world data, despite focusing
on the top seven classes with the highest number of event frames
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Figure 1: Number of frames in training data.

among the 14 “human voice” classes, the number of frames among
the classes is imbalanced, with a ratio of approximately 100 to 1
between the most common and the rarest.

Many studies have treated SED as a multi-label classification
problem for handling overlapping events that often cause detec-
tion errors [6, 7, 8]. [9] represented event overlaps by linking a
bivariate probability distribution based on time and frequency with
class-wise hidden Markov models. In [10], a non-negative matrix
decomposition-based method that jointly trained a dictionary and
a multinomial logistic regression classifier was used to manage the
overlap of sounds. In [11], an event independent network for SED
and localization was developed with a track-wise output. In poly-
phonic sound event detection (polyphonic SED) with deep learning,
[12] performed multi-class classification by considering all possible
overlapping event combinations as classes. However, the model ar-
chitecture requires significant modification to manage a multi-class
multi-tasking problem. Therefore, the conventional method [12]
cannot be applied to the current polyphonic SED system without
any modification of the network architecture.

Binary cross-entropy (BCE) loss is often employed as the loss
function of multi-label classification in polyphonic SED. However,
SED using BCE often falls into imbalance between sound event
classes when training an SED model. Therefore, when applied to
real-world data, the accuracy of rare class event detection decreases.
Specifically, accurately detecting anomalous or rare sounds such as
“Screaming” is more important than detecting common sounds such
as “Speech,” as shown in Fig. 1. Several loss functions that are ef-
fective for imbalanced data have been proposed in polyphonic SED.
[13] proposed asymmetric focal loss and focal batch Tversky loss;
however, these mainly address the imbalance problem between neg-
ative and positive samples. [14] proposed time-balanced focal loss,
which is highly dependent on the dataset because the class weights
used in the loss function are adjusted as hyperparameters.

Therefore, without modifying the original model architecture
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or preparing the class weights, we propose a method that periodi-
cally uses multi-label classification based on BCE and multi-class
classification to prioritize rare classes as target labels when sound
events overlap.

The contributions of this study can be summarized as follows:

• We propose a new model training method for detecting over-
lapped and rare sound events. The proposed method combines
multi-class classification, in which rare classes are preferen-
tially learned as target labels, along with multi-label classifica-
tion. We then confirm the efficacy of this method.

• We reconstructed a strongly labeled AudioSet using seven
sound event classes with “Human voice” at the upper level.
We conducted a baseline evaluation for an SED task covering
multiple types of human vocalization with these classes.

2. DATASET

Based on AudioSet’s strong labels [5], we created a new dataset
comprising 10 seconds of audio taken from the soundtrack of a
YouTube video, with approximately 67,000 clips for training and
18,000 clips for evaluation. The strongly labeled AudioSet on-
tology is a hierarchy of 356 sound event classes. The sound
classes selected for this study were the following seven event classes
within the “Human voice” class: “Speech,” “Singing,” “Laughter,”
“Shout,” “Crying, sobbing (Crying),” “Screaming,” and “Whisper-
ing.” In cases where the selected classes have subclasses, the sub-
classes are merged into the superclass. For example, subclasses
“Baby cry, infant cry” and “Whimper” are merged into a superclass
“Crying.” Sound clips with other sound events in “Human voice,”
such as “Humming” or “Yawn,” were not used in the dataset be-
cause there were few events in each class.

When sound clips contain other sound events from the cate-
gory non-“Human voice,” such as “Music” or “Hands,” the clips
were still used. However, these sound events were only background
noise, that is, they were not used as target labels. After extract-
ing the dataset to contain the selected sound class for each au-
dio clip, the dataset contained 50,650 sound clips for training and
8,747 sound clips for evaluation. Note that in this study, rare labels
(“Screaming” and “Whispering”) were defined as appearing with
approximately 1% of the frequency of the most frequent label.

3. PROPOSED METHOD

In this section, we first describe the loss functions used in this study
for the multi-label and multi-class classification tasks. Next, we dis-
cuss a new model training method combining those loss functions.
Finally, we describe a method of label selection for multi-class clas-
sification using polyphonic SED.

3.1. Loss function

Generally, a sigmoid activation function-based BCE is employed in
training polyphonic SED models.

f(s)i,j =
1

1 + e−si,j
(1)

LBCE = −
C∑
i

T∑
j

{yi,j log(f(s)i,j)

+(1− yi,j) log(1− f(s)i,j)}, (2)

Figure 2: Overview of the proposed model training method.

where f is the sigmoid function, si,j is the i th class's j th time frame
logit, yi,j is the i th class's j th time frame's target label, C is the total
number of classes, and T is the total number of time frames.

Conversely, a softmax activation function-based cross-entropy
(Softmax-CE) loss for a multi-class classification is employed in
monophonic SEDs, to choose one event from multiple sound event
classes.

g(s)i,j =
esi,j∑C
k esk,j

(3)

LSoftmax−CE = −
C∑
i

T∑
j

yi,j log(g(s)i,j), (4)

where g is the softmax function.

3.2. Training process

In this study, we applied alternately either BCE or Softmax-CE
within a defined period, as shown as Fig. 2. Specifically, Softmax-
CE was applied while using multi-class classification every N
epoch. When the model was trained by Softmax-CE, it was trained
by BCE and saved at the next epoch. Then, the model for evalua-
tion was only used at the epoch with the minimum validation loss.
For example, when multi-class classification was performed at ev-
ery third epoch, i.e., at the 3, 6, 9, ..., 3*i epochs, the validation loss
was monitored at the 4, 7, 10, ..., (3*i+1) epochs, with i being a
positive integer.

3.3. Label selection for multi-class classification

Two problems are often encountered when performing multi-class
classification for polyphonic SED because multi-class classification
always requires one target label during loss computation. The first
problem is determining which label to allocate when multiple sound
events occur simultaneously. The second problem is determining
which label to allocate when none of the target sound events occur.
To solve these problems, we propose a new method of label selec-
tion using the sparsity of sound events. Specifically, we prioritize
the rarest label for multiple events and define a new class label for
no events. The details are discussed below.
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Figure 3: Overview of the target labels. (a) multi-label classification and (b) multi-class classification.

Table 1: Number of frames for each sound event.

The number of frames

Event class Multi-label Multi-class

Speech 9,083,336 8,627,958
Singing 2,781,533 2,690,509
Laughter 683,036 666,186

Shout 612,058 607,208
Crying 174,120 173,731

Screaming 85,578 85,578
Whispering 80,194 80,194

Multiple events This section describes the method to allocate
sound event labels when multiple overlapping sound events occur
concurrently during a single clip, as shown in Fig. 3. In Fig. 3,
multiple sound events overlap as follows.

• 1.6 - 3.2 seconds : Speech and Shout
• 7.1 - 8.3 seconds : Laughter and Shout
• 8.3 - 8.9 seconds : Speech, Laughter, and Shout
• 8.9 - 10.0 seconds : Speech and Laughter

We adopted the rarest label for each time frame in the clip. In the
example in Fig. 3, when multi-class classification was performed,
the labels in bold were used. The number of frames for each label in
the training data when changing from the labels used in multi-label
classification to those used in multi-class classification is shown in
Table 1. Frequent labels such as “Speech” and “Singing” show a
large decrease in the number of frames when compared with the
number of rare labels.

No events In multi-label classification, BCE originally in-
cludes calculation of inactive frames. However, in multi-class clas-
sification, even when none of the seven target labels exist in a frame,
one class must be set as the target label. Therefore, a new class “No
sound” was created and allocated to time frames containing no tar-
get class. Fig. 3(b) shows the “No sound” class with thick black
lines between 3.3 - 3.5 seconds and 5.2 - 5.5 seconds.

4. EXPERIMENT

4.1. Experimental setups

The AudioSet sound clips were downloaded from YouTube. These
sounds were mostly monaural. The left and right sides of the stereo-
phonic sounds were averaged to produce monaural sounds. The

Table 2: Model architecture. The kernel sizes of the convolutional
and pooling layer are denoted as “Conv (kernel size)” and “Max
Pooling (kernel size),” respectively. The number of attention heads
is denoted as “Transformer Encoder (number of attention heads).”

Conv3 RB

Log-mel spectrogram
500 frames × 64 mel bins

Conv (3 × 3) Conv (3 × 3)
BN, ReLU, Dr BN, ReLU

Max Pooling (8 × 1) ResBlock
Conv (3 × 3)

BN, ReLU, Dr ResBlock
Max Pooling (4 × 1)

Conv (3 × 3)
BN, ReLU, Dr ResBlock

Max Pooling (2 × 1)
(Transformer Encoder (32)) × 2

FC, Sigmoid

sounds were resampled to 44.1 kHz, as previously configured [7].
The sounds were then converted into a logmel scale of F = 64 filters
calculated every 40 milliseconds with a hop size of 20 milliseconds.

Inspired by [13], a convolutional neural network (CNN)-
transformer-based network was used as the model architecture. This
architecture performs better than the CNN-biGRU-based network,
which is widely used in SED [7, 15, 16]. The model architecture
is shown in Table 2. The system has two types of CNN backbones:
one with three Convolution layers (Conv3) and the other with three
ResBlocks (RB). The parameters of the convolutional layers in RB
are the same as those of Conv3.

The models were trained using the RAdam optimizer [17] with
a learning rate of 0.001. Early stopping was implemented after 50
epochs if no improvement on validation loss was noted.

As evaluation metrics, we used the mean average precision
(mAP), the micro average precision (micro-AP), and the frame-
based macro- and micro-Fscores with a threshold for prediction of
0.5. Even when the proposed method was deployed with eight event
classes including “No sound,” we evaluated them using only the
original seven classes. In this study, we used eight classes when
performing both the multi-label and multi-class classification using
the proposed method.
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Table 3: Average SED performance for two backbones.

Conv3 RB

Method mAP macro-
Fscore micro-AP micro-

Fscore mAP macro-
Fscore micro-AP micro-

Fscore

baseline 51.96% 38.16% 83.39% 73.83% 58.04% 50.06% 85.48% 77.11%
AFL 50.92% 36.92% 82.90% 73.19% 59.05% 52.15% 85.66% 77.56%
e0 51.60% 39.15% 83.25% 72.72% 58.22% 49.71% 85.35% 76.82%
e1 51.51% 37.03% 79.59% 50.88% 56.28% 32.97% 80.39% 47.36%

e2 (proposed) 52.19% 40.41% 83.55% 74.65% 60.32% 53.40% 86.65% 78.52%
e3 (proposed) 51.63% 38.20% 83.11% 73.49% 59.51% 50.96% 86.47% 78.38%
e4 (proposed) 51.54% 38.59% 83.27% 73.48% 59.89% 52.70% 86.59% 78.58%
e5 (proposed) 51.28% 38.25% 83.14% 73.49% 59.66% 51.35% 86.36% 78.28%

Table 4: Average SED performance of the rare-event labels for the
two backbones.

Conv3 RB

Method AP Fscore AP Fscore

baseline 17.29% 3.57% 27.04% 17.03%
Screaming AFL 16.46% 2.92% 28.08% 15.14%

e2 (proposed) 18.73% 4.01% 28.37% 13.43%

baseline 55.86% 42.91% 64.68% 61.64%
Whispering AFL 55.03% 40.55% 65.67% 60.81%

e2 (proposed) 56.79% 45.19% 67.34% 65.64%
baseline 36.58% 23.24% 45.86% 39.34%

Avg. AFL 35.74% 21.73% 46.87% 37.98%
e2 (proposed) 37.76% 24.60% 47.85% 39.54%

4.2. Experimental results

Table 3 shows the results for the baseline using only multi-label
classification and the proposed method that performed multi-label
classification while using multi-class classification every N epochs.
Each result is the average of five iterations. The value of N in
eN represents frequency of switching to Softmax-CE. Here, e0 was
trained using multi-task learning, where multi-label classification
and multi-class classification were performed simultaneously every
epoch. Conversely, e1 was trained using Softmax-CE every epoch
and evaluated as a multi-label classification. The baseline method
was performed on the original seven-class multi-label classifica-
tion without the “No sound” class, and the proposed method was
performed on the eight-class multi-label classification and multi-
class classification including the “No sound” class. When e2, i.e.,
multi-label classification and multi-class classification, was used in-
dependently of the backbone for every other epoch, it demonstrated
the best performance on several metrics. The proposed method im-
proved mAP by 0.23 percentage points and 2.28 percentage points
for Conv3 and RB, respectively. This result demonstrates that the
proposed method improves the performance of rare events by us-
ing Softmax-CE and retains the performance of frequent events by
using BCE. Meanwhile, the simultaneous use of Softmax-CE and
BCE in e0 could have prevented the influence of Softmax-CE. With
an increase in N , the performance of several metrics gradually de-
creases, and at e5, the performance is comparable to the baseline
values. When Softmax-CE is used less frequently, it becomes less
effective.

Table 4 shows the results when focusing on rare labels
(“Screaming” and “Whispering”). Comparisons were made with

asymmetric focal loss (AFL), which has an effect on the imbalanced
data [13]. There is a significant difference between “Screaming”
and “Whispering.” “Screaming,” which is similar to “Shout” and
“Singing,” is more likely to occur in noisy environments, whereas
“Whispering” is a special type of sound event where other sound
events are unlikely to occur concurrently. As with the overall perfor-
mance, e2 performed highest on many measures, but the Fscore for
“Screaming” dropped significantly. “Screaming” had a lower Fs-
core, which was based on the threshold, because underfitting caused
by a rare label reduced the predicted probability of “Screaming.”
However, because e2 performed the highest, when comparing un-
der the same conditions, the intrinsic prediction performance of e2
is superior and is effective for rare labels. Unlike the original exper-
imental dataset used for evaluating AFL, the number of data classes
(seven) was limited due to an imbalance of approximately 1 to 100
in a class. This may have contributed to the e2 performance being
superior to that of AFL.

5. CONCLUSION

We proposed a method of polyphonic SED by periodically using
either multi-label or multi-class classification. Based on the spar-
sity of sound events, multi-class classification was used to strongly
train rare sound event labels, in which the rarest sound event was
selected as the label representing each frame. The proposed method
was evaluated on a human voice dataset extracted from the strongly
labeled AudioSet data. Our approach was found to be most effective
when the two loss functions were alternately applied. For the im-
balanced data, regarding both the overall metrics and for rare labels,
this method significantly outperformed the conventional methods.
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