
Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

ANALYZING THE EFFECT OF EQUAL-ANGLE SPATIAL DISCRETIZATION ON SOUND
EVENT LOCALIZATION AND DETECTION

Saksham Singh Kushwaha1, Iran R. Roman2∗, Juan Pablo Bello2,3

1 Courant Institute of Mathematical Sciences, New York University, NY, USA
2 Music and Audio Research Lab, New York University, NY, USA

3 Center for Urban Science and Progress, New York University, NY, USA

ABSTRACT
Sound event localization and detection (SELD) models detect and
localize sound events in space and time. Datasets for SELD of-
ten discretize spatial sound events along the polar coordinates of
azimuth (integers from -180º to 180º) and elevation (integers from
-90º to 90º). This discretization, known as equal-angle, results in
more dense points at the poles (±90º elevation) than at the equator
(0º elevation). We first analyzed the effect of equal-angle discretiza-
tion on the 2022 DCASE SELD baseline model. Since the STARSS
2022 dataset that accompanies the model shows unbalanced sam-
pling of spatial sound events along the elevation axis, we created
a synthetic dataset. Our dataset has spatial sound events uniformly
distributed along the elevation axis. We created two versions: one
with targets spatially discretized using equal-angle, and another one
with a uniform spatial discretization (both versions had the same au-
dio). The model trained with equal-angle showed a greater angular
localization error for targets around the equator compared to the
poles, while the model trained with uniform spatial discretization
showed a uniform localization error along the elevation axis. To
train the model with the STARSS2022 dataset and reduce the effect
of its equal-angle-discretized targets, we modified the model’s loss
function to penalize localization errors above an angular distance
threshold around each target. Using this loss we fine-tuned a model
trained with the original loss, and also trained the same model from
scratch. Results showed improved localization metrics in both mod-
els compared to baseline, while retaining classification metrics. Our
results show that equal-angle discretization yields models with non-
uniform localization errors for targets along the elevation axis. Fi-
nally, our proposed loss function penalizes the SELD model’s an-
gular localization errors, regardless of which spatial discretization
was used to annotate the dataset targets.

Index Terms— sound event localization and detection, spatial
sampling, activity-coupled Cartesian direction of arrival, DCASE

1. INTRODUCTION

Sound event localization and detection (SELD) consists of localiz-
ing sound events in space and time while also assigning them to
a class label [1]. SELD can be applied for environmental sound
classification [2], simultaneous localization and mapping for navi-
gation without visual input or with occluded targets [3, 4], tracking
of sound sources of interest [5], audio surveillance [6], and acous-
tic imaging [7]. As a result, there has been an increased interest
in SELD modeling, and research communities have organized chal-
lenges to centralize efforts and advancements [8, 9, 10].
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Figure 1: Two types of spatial discretization of points on a sphere.
(A) equal-angle and (B) Fibonacci. (A) results in denser points at
the poles than at the equator, while (B) does not.

The Detection and Classification of Acoustic Scenes and Events
(DCASE) community introduced its annual SELD challenge in
2019 [10]. The DCASE SELD challenge provides participants
with multichannel audio recordings of categorical sound events (i.e.
speech, footsteps, running water, etc.) and their spatiotemporal
trajectories on the azimuth and elevation axes. Participants must
develop methods to detect, localize, and classify each event. The
DCASE SELD challenge also provides a baseline model, which
reflects key incremental advancements from the community. For
example, a significant advancement has been in the training loss
function, which went from separately measuring sound event de-
tection (SED) and direction-of-arrival (DOA) [1] to jointly carrying
out these using a mean-squared-error (MSE) regressor that accounts
for overlapping sound events categories [11].

SELD datasets often have spatial targets that are discretized in
a sphere along the elevation (θ = [−90, 90] ∈ Z) and azimuth
(ϕ = [−180, 180) ∈ Z) axes in units of degrees [1, 12, 13, 14].
This sampling of points in space, known as equal-angle, is easy to
interpret because it yields uniform-looking grids on a 2D projection
(ϕ vs θ). However, equal-angle points on the sphere shows a larger
density of points at the poles (±90° elevation) than at the equator (0°
elevation) [15]. Furthermore, equal-angle sampling results in larger
quantization errors around the equator.

As far as we know, current SELD research has not studied how
a non-uniform density of points along the elevation axis impacts
model performance. We hypothesize that training SELD models
with equal-angle discretized data results in non-uniform localiza-
tion performance along the elevation axis. This paper empirically
analyzes the impact of equal-angle spatial discretization on SELD
model performance and proposes a practical way to mitigate it.
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2. EQUAL-ANGLE DISCRETIZATION IS IRREGULAR

A sphere can be discretized into N points using a sampling function
s(θ, ϕ), resulting in the set of vectors {x1, x2, ...xN} ⊂ S2. This
set represent a lattice of directions around the sphere [16]. For the
specific case of equal-angle spatial discretization, N = NE ×NA,
where NE is the number of points uniformly sampled along the
elevation axis θ ∈ [−π

2
, π
2
] and NA is the number points along

the azimuth axis ϕ ∈ [0, 2π) (see supplement S11 for a detailed
mathematical description of the equal-angle sampling function and
its non-uniform density along the elevation axis).

Figure 1A shows how equal-angle spatial discretization, al-
though regular along the axes of azimuth and elevation, results in a
lattice with non-uniform distances between points, particularly no-
ticeable along the elevation axis (i.e. poles versus equator).

It is worth noting that humans listen most events close to the
equator (i.e. other speakers or ecologically-relevant sound sources
on the azimuth). This introduces another sampling bias in realis-
tic SELD datasets. Thus, equal-angle discretization can yield less-
than-ideal resolution where most relevant sound sources exist.

3. SELD WITH EQUAL-ANGLE SPATIAL TARGETS

We want to empirically test if equal-angle discretization affects
SELD model performance. We hypothesize that the model’s lo-
calization error will be a function of target elevation. More specifi-
cally, we predict that the irregularities of equal-angle discretization
will result in larger errors around the equator than at the poles.

3.1. Synthetic dataset with equal-angle spatial discretization

We wanted to do this analysis with the DCASE STARSS2022
dataset [17] (real-world events belonging to thirteen categories, spa-
tially discretized using equal-angle). However, its distribution of
events on the elevation axis is not uniform (see supplement S2).
Therefore, it will be hard to determine the effect of equal-angle
discretization on model performance (since the data shows non-
uniform distribution of targets). Moreover, our analysis is not fo-
cused on classification, so a single sound event category would be
enough. We decided to create a synthetic dataset that controls for
uniform target localization along the elevation axis using a single
sound category. In contrast to our dataset, DCASE STARSS2022
is more complex, so we expect SELD models to easily learn our
synthetic training split and generalize to the test split.

Our synthetic dataset has no moving or overlapping events, and
repeats a single alarm sound (5 seconds duration) from FSD50k
[18]. We used impulse responses (IRs) from two rooms (No. 3 and
No. 4) in the TAU-SRIR database [19] that we convolve with the
alarm sound. The rooms were selected because they contain IRs
from sources localized at elevations spanning the integers

θ ∈ [−33..32] | θ ̸= −25,−24,−3,−2, 3, 20, 21 (1)

in units of degrees (the missing integers are elevations not present
in the two rooms). To generate the data we used the DCASE2022-
data-generator that accompanies the TAU-SRIR database [19].

We synthesized two data folds: training and testing with 1600
and 900 tracks, respectively. Each track was a four-channel signal
(fs = 24kHz) with a duration of 1 minute (sequences of alarm

1the supplement and code are available at https://github.com/
sakshamsingh1/dcase seld spatial sampling analysis

Figure 2: Density of sound events locations in our synthetic dataset
along the elevation (A) and azimuth axes (B). Data synthesis con-
trolled for uniform density of sound events along the elevation axis.

sounds and silence). While both training and test sets had elevation
values spanning the range described in Eq. 1, no IRs overlapped
across sets. This ensured that the absolute location of simulated
sound sources was different between training and test sets. Figure 2
shows the distribution of sound event locations in our dataset.

3.2. SELD model localization on equal-angle targets

We used our dataset to train the 2022 DCASE SELD baseline
model [1], which is a convolutional recurrent neural network that
maps multichannel audio features (generalized cross-correlation
with phase transform) into sound event locations and classes (see
section 6.1 for a description of the model’s output format). The
trained model detected all test set sound events and showed an av-
erage angular localization error of 1.81°. Figure 3A shows a scatter
plot with the localization error for each test set prediction as a func-
tion of target elevation. To gain intuition about how the model’s
localization varies as a function of elevation, we fit a line and a
second-order polynomial (i.e. parabola) to this plot. The coeffi-
cient that multiplies the polynomial’s second-order term determines
the curvature of the parabola. If its value is close to zero, this indi-
cates that the parabola resembles a line. In contrast, a more negative
(positive) coefficient indicates that the parabola is more curved, and
we can interpret it as the model’s error decreasing (increasing) as a
function of elevation away from the equator.

The line was ŷl = 0.89 + (3.2 × 10−3)x, while the polyno-
mial was ŷp = 1.03 + (2.9 × 10−3)x − (0.4 × 10−3)x2, also
shown in Figure 3A. The polynomial’s second order coefficient re-
veals an upside-down parabolic relationship between the model’s
angular localization error and target elevation. The Pearson’s cor-
relation coefficient for the linear regression was r = 0.01, and for
the polynomial regression was r = 0.09. This indicates that the
parabola better explains the model’s error than the line. These re-
sults show that training a SELD model with equal-angle data results
in larger localization errors around the equator.
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Figure 3: Scatter plots of SELD model angular localization error on our synthetic test data as a function of target elevation. Each dot is a
sound event. (A) Trained with equal-angle points. (B) Trained with Fibonacci points. (C) Trained with equal-angle points and fine-tuned
using our proposed loss function (see section 6). The red and blue lines are linear and second-order polynomial regressions, respectively.

4. UNIFORM DISCRETIZATION OF THE SPHERE

Alternatives to equal-angle discretization that uniformly sample
points on the sphere exist [20, 21]. Perfectly-uniform discretization
is limited by using the five Platonic solids, whose vertices can be
used as points on the sphere [15]. The Fibonacci lattice [16] is an-
other possible method that results in neighboring points separated
by a roughly equal angular distance and is obtained by sampling
points along a spiral that links the two poles (see [16] for the Fi-
bonacci lattice formula). Figure 1B shows Fibonacci discretization.

5. SELD WITH UNIFORM SPATIAL TARGETS

We want to analyze SELD model localization when trained with
uniformly discretized spatial targets. We hypothesize that this will
result in uniform localization error on the elevation axis.

5.1. Synthetic dataset with uniform spatial sampling

Our synthetic dataset generated in section 3 spatially discretized
sound events using equal-angle. To generate a uniformly discretized
version of our dataset, we took our dataset’s equal-angle annota-
tions and transformed them into Fibonacci discretization by con-
verting each equal-angle target into the nearest Fibonacci point. Our
Fibonacci discretization had N=32768 points, which is the power
of two that yields an angular distance between neighboring points
around 1° [16] (similar to the distance between integers in Eq. 1).
The audio tracks were exactly the same across equal-angle and Fi-
bonacci versions of the dataset.

5.2. SELD model localization on Fibonacci targets

The 2022 DCASE SELD model trained with Fibonacci targets also
detected all sound events, showing an average angular localiza-
tion error of 1.86° on the test set (Figure 3B shows this model’s
scatter plot). We also fit a line to this plot, which was ŷl =
0.92 + (3.1× 10−3)x, and a second-order polynomial, which was
ŷp = 0.96 + (3.0 × 10−3)x − (0.1 × 10−3)x2. Compared to the
polynomial for the model trained with equal-angle data, this polyno-
mial’s second order term reveals a less pronounced parabola, which
is also visible in Figure 3B. The Pearson’s correlation coefficient for

the linear regression was r = 0.09, and for the polynomial regres-
sion was r = 0.11. This indicates that, compared to equal-angle,
the parabola and the line more similarly explain the model’s error
as a function of target elevation after training with Fibonacci tar-
gets. In other words, the model trained with Fibonacci data shows
localization errors that are uniform as a function of target elevation.

Our results clearly illustrate how SELD model performance is
affected by equal-angle and Fibonacci discretization. However, we
recognize that the Pearson and parabolic coefficients we observed
show clear trends but are relatively weak indicators. Future work
could support our observations using more robust statistical testing.

6. PROPOSED SOLUTION

Our empirical analysis with synthetic data revealed that equal-angle
discretization can result in a SELD model with larger localization
errors at the equator than at the poles. Substituting the equal-angle
discretization with a uniform one (like a Fibonacci lattice) would
be a simple solution. In fact, resampling the DCASE STARSS2022
dataset using a Fibonacci lattice and training the model from scratch
did result in improved metrics on the test set compared to baseline
(see Table 6.1). However, since equal-angle discretization is preva-
lent in SELD datasets, engineered SELD learning methods that re-
duce its impact without the need to spatially resample the data are
needed. Here we propose a training loss function that, in addition
to computing the mean-squared error (MSE) between targets and
model predictions, penalizes the model’s angular localization error
uniformly for all points on the sphere.

6.1. The threshold angular error ADPIT (TAEADPIT) loss

The 2022 DCASE SELD model is trained with the auxiliary dupli-
cating permutation invariant training (ADPIT) loss [11], which uses
the multi-class activity-coupled cartesian direction of arrival (multi-
ACCDOA) target format P ∈ R3×N×C×T , where 3 is the dimen-
sionality of 3D cartesian coordinates, N is the maximum number of
simultaneous sound events the model is trained to detect, C is the
number of classes and T is the number of time frames. A vector
P nct ∈ R3 has a magnitude of 1, i.e. ||P nct||2 = 1 and repre-
sents the location of a sound event for a specific track n, a specific
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class c and a specific time-frame t. Such a vector may also rep-
resent the absence of a sound event if it has a magnitude of 0. A
related term, a ∈ RN×C×T , indicates the activities over tracks,
classes, and time, and anct ∈ {0, 1}. It is worth noting that the tar-
get contains duplicated sound events along the N dimension when
the number of simultaneous sound events for each class is less than
the maximum N . A complete description of the ADPIT loss can be
found in its original publication [11].

The multi-ACCDOA format is permuted for each time-frame
and class, and all permutation are compared against the model’s
output P̂ ∈ R3×N×C×T using MSE, yielding the ADPIT loss

LADPIT =
1

CT

C∑
c

T∑
t

min
α∈Perm(ct)

lACCDOA
α,ct , (2)

lACCDOA
α,ct =

1

N

N∑
n

MSE(P ∗
α,nct, P̂ nct), (3)

where P ∗
α,nct indicates a permutation of the multi-ACCDOA

format, and only the permutation that resulted in the minimum
lACCDOA
α,ct term is used to average over classes and time-frames.

Due to the nature of the multi-ACCDOA format, the ADPIT
loss function operates over Cartesian coordinates. We propose
adding a term that penalizes the model’s angular localization error
on the sphere where the data is spatially discretized:

lALE
α,ct = max(aα,nctALEα,nct, H)

ALEα,nct = ∠(p(P α,nct), p(P̂ )nct),
(4)

where p(x) is a function that converts from cartesian to polar co-
ordinates denotes, ∠(a, b) is the angular distance between inputs a
and b, and H is a threshold. ALE stands for angular localization er-
ror. Note that the aα,nct term masks ALE so that only the model’s
angular localization error related to active targets counts toward the
loss. Adding the ADPIT loss gives:

LTAEADPIT =
1

CT

C∑
c

T∑
t

min
α∈Perm(ct)

lACCDOATAE
α,ct , (5)

lACCDOATAE
α,ct =

1

N

N∑
n

MSE(P ∗
α,nct, P̂ nct) + β(lALE

α,ct −H),

(6)
where β is a scale factor on the new term. We call this new loss
”thresholded angular error ADPIT” (TAEADPIT) loss. The new
term ALE is a regularizer that uniformly penalizes angular localiza-
tion errors, independent of how targets are spatially discretized.

7. EMPIRICAL EVALUATION OF THE TAEADPIT LOSS

We conducted experiments to assess the TAEADPIT loss. First, we
used it to fine-tune the model trained with the equal-angle version
of our synthetic dataset. Figure 3C shows the model’s angular local-
ization error as a function of elevation. We also fit a line to this plot,
which was ŷl = 0.49− (1.1×10−3)x, and a second-order polyno-
mial, which was ŷq = 0.61−(1.4×10−3)x−(0.31×10−3)x2. The
parabola’s second order coefficient has a value of −0.31 × 10−3,
which is closer to zero compared to the one found before fine-tuning
(−0.42 × 10−3). This indicates that fine-tuning with the TAEAD-
PIT loss flattened the parabola. In other words, the model fine-tuned

Loss ER20o F20o LECD LRCD SELD
ADPIT-base 0.69 0.24 30.43 0.43 0.55
TAEDPIT-tune 0.71 0.23 28.86 0.47 0.54
TAEDPIT 0.71 0.20 26.42 0.41 0.56
ADPIT-Fib 0.68 0.22 26.11 0.46 0.54

Table 1: Comparison of SELD model performance when train-
ing with ADPIT loss versus training with the proposed TAEAD-
PIT loss. ADPIT-base: the baseline 2022 DCASE SELD model.
TAEADPIT-tune: fine-tuning the baseline model with TAEADPIT.
TAEADPIT: baseline model trained from scratch with TAEADPIT.
ADPIT-Fib: baseline model trained with the data spatially resam-
pled to the Fibonacci lattice and the ADPIT loss. The metrics are
the DCASE SELD challenge metrics with class-depending macro-
averaging are used (see [10]).

with the TAEADPIT loss shows more uniform localization errors as
a function of target elevation than it did before being fine-tuned.

We also wanted to assess the TAEADPIT loss using real-world
data. First, we ensured that we could replicate the baseline DCASE
SELD 2022 model metrics using the four-channel microphone ver-
sion of the DCASE STARSS2022 dataset [14] and supplemental
synthetic data [22] (see Table 1). Next, we ran a couple of ex-
periments to assess whether the TAEDPIT loss could benefit this
model’s performance. In all experiments, β = 1 × 10−3 in Eq.
5 (empirically-found). First, we used the TAEADPIT loss to fine-
tune it. Then, we trained it from scratch using the TAEADPIT loss.
Table 6.1 shows the results on the DCASE SELD metrics, indicat-
ing that using the TAEADPIT loss to fine-tune or train the SELD
model from scratch can improve its localization error while retain-
ing or only marginally impacting the classification metrics.

Our results show that the TAEADPIT loss can be used to train a
SELD model using equal-angle data and improve localization met-
rics, and that it does so by reducing the larger localization error
around the equator produced by equal-angle discretization.

8. CONCLUSION

In this paper, we studied the irregularities of equal-angle spatial dis-
cretization, which results in a larger density of points at the poles
than at the equator. No previous studies have shown whether a
SELD model’s performance is affected by training with equal-angle
discretized targets. We have empirically shown that equal-angle
data affects SELD model localization on the elevation axis, caus-
ing larger localization errors around the equator than at the poles.

We also studied whether discretizing targets using a uniform Fi-
bonacci lattice resulted in the same effect. We found that training
a SELD model with Fibonacci data results in more uniform local-
ization errors along the elevation axis compared to equal-angle. We
also proposed a loss function to mitigate the effect of equal-angle
by adding a thresholded angular localization error term to the AD-
PIT loss. Empirical results using our proposed loss when training a
SELD model with equal-angle showed improved localization met-
rics compared to when using the ADPIT loss.

Next, we would like to assess whether a thresholded angular
localization error in the training loss benefits other SELD models,
and whether the benefit depends on audio format (i.e. FOA, HOA,
stereo) and/or localization target format (i.e. Cartesian, 3D polar).
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multiple doa estimation using acoustic intensity features for
ambisonics recordings,” IEEE Journal of Selected Topics in
Signal Processing, vol. 13, no. 1, pp. 22–33, 2019.
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