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ABSTRACT

We propose a low-complexity acoustic scene classification (ASC)
model structure suitable for short-segmented audio and fine-tuning
methods for generalization to multiple recording devices. Based on
the state-of-the-art architecture of the ASC, broadcasting-ResNet
(BC-ResNet), we introduce BC-Res2Net that uses hierarchical
residual-like connections within the frequency- and temporal-wise
convolutions to extract multiscale features while using fewer pa-
rameters. We also incorporate the attention and aggregation method
proposed in short-utterance speaker verification with BC-Res2Net
to achieve high performance. In addition, we train the model with
a novel fine-tuning method using a device-aware data-random-drop
to avoid optimization for only a few devices. When the amount of
data differed for each device in the training dataset, the proposed
method gradually dropped the data of the primary device from the
mini-batch. The experimental results on the TAU Urban Acous-
tic Scenes 2022 Mobile development dataset demonstrated the ef-
fectiveness of multi-scale modeling in short audio. Furthermore,
the proposed training strategy significantly reduced the multi-class
cross-entropy loss for various devices.

Index Terms— Acoustic scene classification, multi-scale, data
imbalance, fine-tuning, short-segmented audio

1. INTRODUCTION

Remarkable progress in acoustic scene classification (ASC) has
been accomplished with the development of deep learning, and sev-
eral studies have recently been conducted to implant deep neural
networks (DNNs) into low-resource devices that are suitable for
practical applications [1, 2]. Notably, the Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE) Challenge have
been held with various audio tasks, including ASC, and contributes
to advance computational environmental audio analysis techniques.
In DCASE Task 1, ASC systems should satisfy constraints such as
data imbalance depending on the recording device, low complexity
limitations, and short audio input while ensuring high classification
accuracy [3, 4].

Owing to the limitation on the number of parameters, con-
volutional neural networks (CNNs) are preferred over DNNs for
ASC models. To further enhance the feature extraction capa-
bility of CNNs, the ResNet [5] structure and depth-wise separa-
ble CNNs (DW-CNNs) [6] were adopted in [7] and [8], respec-
tively. Moreover, the modified MobileNet [9], EfficientNet [10],
and broadcasting-ResNet (BC-ResNet) [11] structures, which were
designed to consider computational power, exhibited excellent per-
formance [3,12]. To improve the generalization of the model to the
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multiple devices, ResNorm was proposed with BC-ResNet, which
normalized the frequency bands with the residual path [12].

Several studies introduced the model architecture in the speaker
verification field, which focused on the frequency of speech and
channels in CNN to improve the verification performance in short-
duration speech [13–15]. Liu et al. [14] conducted a multiscale
frequency-channel attention (MFA) framework with frequency-
channel attention and Res2Net structure [16], which learned mul-
tiscale features to emphasize the significant frequency and channel
components. Jung et al. [15] proposed a feature pyramid module
(FPM) that upsamples in a top-down pathway to effectively aggre-
gate various-resolution feature maps.

This paper introduces two strategies for generalized ASC for
various devices under low complexity and short input time condi-
tions: improving the model structure, and training with a novel fine-
tuning method. Inspired by Res2Net, we propose BC-Res2Net that
are accomplished by modifying the BC-ResNet structure with mul-
tiscale modeling to increase the receptive field size of each CNN.
We integrate the BC-Res2Net with MFA and FPM, which effec-
tively extract and aggregate features from short speech signals, to
construct the ASC model. Subsequently, we perform device-aware
data-random-drop-based fine-tuning that drops data of the selected
device in batch-level processing for the pretrained model to obtain
consistent performance in various recording devices. We choose the
device that recorded the most in the training dataset. We do not drop
the data at the beginning of the fine-tuning but gradually increased
the drop rate to a given parameter. In addition, we add regulariza-
tion with a cross-entropy loss to avoid overfitting devices that are
not selected.

2. ASC MODEL ARCHITECUTRE

2.1. BC-Res2Net structure

Broadcasted residual learning [11] residually connects two-
dimensional (2D) and one-dimensional (1D) feature maps with
the input. These different sized feature maps are extracted by
frequency-wise 2D and temporal-wise 1D DW-CNNs, respectively,
and they contain frequency and frequency-aware temporal features.
To correct the size mismatch, the output of the 1D DW-CNN, a 1D
feature map is broadcast along the frequency axis. This residual
connection was combined with basic structures such as ResNet and
Transformer [17] to obtain state-of-the-art results in various audio
and speech fields [11, 12, 18] where it is paramount to effectively
capture frequency-time characteristics.

Res2Net, however, computes more efficiently than the con-
ventional convolution-based structure because it comprises several
CNNs connected in a hierarchical residual-like manner. In particu-
lar, the input feature map is sliced precisely with the same channel
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Figure 1: BC-Res2Net structure.

size of CNNs. Each partitioned feature subset has a correspond-
ing CNN that is fed while being sequentially added to the output of
the previous CNN. The CNN outputs have various receptive field
sizes owing to the multiscale operation. To extract the frequency
and frequency-aware temporal features in a multiscale manner, we
propose the BC-Res2Net that converts the frequency- and temporal-
wise convolution of the BC-ResNet into a Res2Net structure. Fig-
ure 1 shows the network blocks of the BC-Res2Net comprising F2,
F1, frequency average pooling, and point-wise 1D CNN, where F2

and F1 denote the Res2Net style 2D and 1D convolutions includ-
ing nonlinear functions, respectively. Because the transition block
is used when the given input and output feature map sizes are as-
signed differently, we describe the proposed structure based on the
normal blocks.

The input feature map X ∈ RC×F×T is sliced into S subfea-
ture maps along with the channel axis, and the feature map subset
is denoted by {x1,x2, ...,xs}. Except for the first subfeature map
x1, each xi ∈ RC/S×F×T has a corresponding frequency-wise
2D DW-CNN with a kernel size of 3 × 1 and subspectral normal-
ization [19], denoted by f2C,i(·) and fSSN,i(·), respectively. The
feature subset xi is sequentially fed into f2C,i(·) and fSSN,i(·), af-
ter adding the output of fSSN,i−1(·). The overall process for F2

can be formulated as follows:

F2(xi) =


xi, if i = 1

fSSN,i(f2C,i(xi)), if i = 2

fSSN,i(f2C,i(xi + F2(xi−1))), otherwise
(1)

Frequency average pooling is applied after concatenating the set of
outputs {F2(x1),F2(x2), ...,F2(xs)} along the channel axis. The
obtained feature map Y ∈ RC×1×T is then fed into F1 to extract
the temporal characteristics. F1 can be expressed as follows:

F1(yi) =


yi, if i = 1

fReLU,i(f1C,i(yi)), if i = 2

fReLU,i(f1C,i(yi + F1(yi−1))), otherwise
(2)

where yi ∈ RC/S×1×T denotes the subfeature map of Y that is
sliced into S along with the channel axis, and f1C,i, and fReLU,i(·)

denote a corresponding temporal-wise 1D DW-CNN with a kernel
size of 3 and the ReLU activation, respectively. The following oper-
ations are performed sequentially: concatenating outputs of F1 into
one, point-wise convolution, channel-wise dropout, and expanding
the feature map size RC×1×T to RC×F×T along with the frequency
axis. Finally, batch normalization with ReLU activation is applied
after combining the output with two auxiliary residuals that the in-
put identity and result of F1. Note that the BC-Res2Net operates
with fewer CNN parameters than the BC-ResNet because the first
subfeature map sliced from F2 and F1 does not proceed with con-
volution. The transition block differs from the normal block in two
ways: auxiliary point-wise 2D CNN is applied before F2 to change
the input channel size, and there is no residual connection for iden-
tity due to the size difference between the input and output.

2.2. ASC model for MFA and FPM

Short audio or speech makes feature extraction difficult because
of insufficient temporal information. Several studies have focused
on adding or enhancing the DNN structure in speaker verification
fields to overcome performance degradation under short-utterance
situations. In this study, we combined MFA and FPM, which im-
proved the feature maps using the attention mechanism and aggre-
gated the features from multiple resolutions, respectively, with the
BC-Res2Net structure to introduce the ASC model for short audio.

Table 1: Architectures of proposed BC-Res2Net-based ASC model.
T ,F , and C denote the number of time sequences, frequency bins,
and CNN channel respectively. Input feature size is 1× F × T .

Output size Stage Operator

2C × F/2× T/2 Stem Conv2D
[
5× 5

]
, stride 2

BatchNorm + MFA

C × F/2× T/2 Stage 1 BC-Res2Net × 2
ResNorm + MFA

1.5C × F/4× T/4 Stage 2
Max-pool

[
2× 2

]
BC-Res2Net × 2
ResNorm + MFA

2C × F/8× T/8 Stage 3
Max-pool

[
2× 2

]
BC-Res2Net × 2
ResNorm + MFA

2.5C × F/8× T/8 Stage 4 BC-Res2Net × 3
ResNorm + MFA

4C × 1× 1 Aggregation FPM
# Classes ×1× 1 Classifier Linear

The overall architecture is presented in Table 1. Assigning the
importance of the frequency channel components for all the outputs
is necessary because the output of each stage has a different resolu-
tion and receptive field. Therefore, we apply MFA to Stem and ev-
ery stage after ResNorm. Figure 2 shows the FPM aggregating the
MFA output of each stage in a bottom-up pathway, where the base
CNN channel of the proposed model is set to 40. The last three fea-
ture maps are upsampled to the size of RC×F/2×T/2, which is the
same as the output of Stage 1. We considered the average of four
feature maps across the frequency-temporal dimension and concate-
nated them into a single feature map with a size of R4C×1×1. The
upsampling method of the FPM is converted into the pixel shuffle
method [20] for greater efficiency compared to the transposed con-
volution method proposed in [15]. The output of FPM is reshaped
through a linear layer according to the number of classes.
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Figure 2: Proposed BC-Res2Net-based ASC model architecture.

3. FINE-TUNING METHOD USING DEVICE-AWARE
DATA-RANDOM-DROP

When we train the ASC model with a significantly different amount
of data for each device, the model undertakes greater effort to char-
acterize a few specific devices occupying a large percentage of the
dataset than to represent the general features of the overall device.
To alleviate this issue, we load a pre-learning model that neglected
the device types and fine-tuned the model by removing data from
specific devices. Before fine-tuning, the last linear layer that classi-
fied the scenes is initialized and retrained to become more device-
agnostic. Next, we fine-tune the model using the suggested device-
aware data-random-drop method. It selects the device with the most
data from the dataset and manages the mini-batch for every step by
randomly removing data from it. However, an excessive drop of
specific devices from the training process can lead to poor ASC
performance owing to a lack of data diversity Therefore, inspired
by curriculum learning [21], we design a method in which the data-
drop rate is initialized with zero and then increased step-wise. The
drop rate gradually increases with the shape of the sigmoid function
from zero to the given parameter. Furthermore, we add regular-
ization to minimize the square weight difference between the fine-
tuning and pretrained model parameters to prevent excessive loss of
information from the selected device as given by:

L = LC + λ
∑
i

(θi − θ̃P,i)
2, (3)

where L, LC , and λ denote the total loss, classification loss, and
scaling factor of regularization, respectively. θ and θ̃P denote the
fine-tuned and pretrained model parameters, respectively, except for
the classifier layer. The pretrained model parameters are stored in
advance.

4. EXPERIMENTAL SETUP

4.1. Datasets and preprocessing

The TAU Urban Acoustic Scenes 2022 Mobile Development dataset
[4] had the same format as the 2020 development dataset [3], same
sample rate of 44.1 kHz and 24 bits. However, this 2022 dataset
segments were significantly shorter (1 s) compared to the last 2020
development set (10 s). In addition, the number of segments grew
tenfold as the 2020 dataset split the 2022 dataset by 1 s.

Table 2: Ablation study of the BC-Res2Net evaluated on the TAU
Urban Acoustic Scenes 2022 Mobile development dataset. (Acc.
indicates the top-1 test accuracy(%).)

Systems # Params MACs Log Loss Acc.
BC-ResNet-40 88.1K 17.21M 1.327 57.1
BC-Res2Net-40 85.8K 15.89M 1.235 59.1
w/ MFA 123.6K 17.45M 1.198 59.3
w/ FPM 93.6K 17.06M 1.212 59.5
w/ MFA & FPM 126.6K 26.76M 1.167 60.8

Table 3: Log loss and top-1 test accuracy (%) comparison for differ-
ent duration of test audio on the TAU Urban Acoustic Scenes 2020
Mobile development dataset. (Dur. indicates durations.)

Dur. BC-ResNet-40 BC-Res2Net-40 BC-Res2Net-40
w/ MFA & FPM

1 s 1.327 / 57.1 1.235 / 59.1 1.167 / 60.8
2 s 1.285 / 57.8 1.190 / 60.3 1.146 / 61.6
5 s 1.301 / 56.7 1.185 / 59.7 1.172 / 60.5

10 s 1.315 / 56.3 1.195 /58.7 1.192 / 59.5

The audio segments were ten types of acoustic scenes from ten
cities, recorded from three real devices (A, B, and C) and six sim-
ulated devices (S1–S6). According to the train-split method of [4],
development dataset 2022 was separated into training and test sub-
sets comprising 139,970 and 29,680 segments, respectively. In the
training subset, the data for Device A accounted for 73% of the
total. In the test split, the data from all the devices were evenly
distributed. The test split contained data recorded with devices S4-
S6, which were excluded in the training data split. The evaluation
dataset was provided without labels for submitting the results.

We used the log Mel spectrum as the input feature for our sys-
tem. The input features were prepared through three steps: down-
sampling from 44.1 kHz to 16.0 kHz, log Mel spectrum feature ex-
traction, and data augmentation. The log Mel spectrograms were
256-dimensional, extracted with 2048 samples of the Hanning win-
dow, and 512 sample shifts. The input feature size obtained using
the preprocessing method mentioned was [1, 256, 32]. The time-
rolling method was used for time-domain augmentation. The input
audio was randomly rolled along the time axis, ranging from -0.5-
0.5 s, with out-of-range parts shifted to the other side. Specaug-
ment [22], except time wrapping, was also employed with two fre-
quency and temporal masks each. Mask parameters of 40 and 4
were used for the frequency and temporal masks, respectively. Each
time-rolling and Specaugment mask was applied with a probability
of 0.8. We also applied Mixup [23] with α = 0.3 to the acoustic
feature space.

4.2. Implementation details

We trained the BC-Res2Net-based ASC model with pretraining and
fine-tuning phases. In the pretraining phase, the AdamW optimizer
[24] with a weight decay of 0.05 was used over 300 epochs, and the
mini-batch size was set to 512. Warmup [25] was applied, where the
learning rate linearly increased from 1e-8 to 0.01 over the first ten
epochs and decayed to zero with a cosine annealing scheduler [26].
We applied a device-aware data-random-drop, treating the selected
Device A as an excluded recording device in the fine-tuning phase.
The mixup was disabled to correct the mismatch between the train-
ing and test conditions. The scaling factor of regularization was 0.4,
and the AdamW optimizer with a weight decay of 1e-8 and fixed
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Table 4: Device-wise top-1 test accuracy (%) and overall log loss comparison of proposed fine-tuning method according to maximum drop
rate on the TAU Urban Acoustic Scenes 2022 Mobile development dataset. (Acc. indicates the top-1 test accuracy (%).)

Systems Fine-tuning Seen device Unseen device Average
(Drop rate) A B C S1 S2 S3 S4 S5 S6 Log loss / Acc.

✗ 72.0 64.5 68.2 62.7 59.5 64.2 54.4 56.4 45.3 1.167 / 60.8
✓ (0.00) 72.8 68.1 69.7 63.1 62.0 66.2 53.4 56.0 47.6 1.083 / 62.1

BC-Res2Net-40 ✓ (0.50) 73.0 67.8 70.1 62.9 61.6 66.5 55.2 56.8 48.4 1.085 / 62.5
w/ MFA & FPM ✓ (0.90) 73.2 68.0 69.4 63.7 61.6 66.2 55.2 57.3 49.0 1.076 / 62.6

✓ (0.99) 72.7 67.2 70.3 63.0 62.2 66.0 55.9 57.4 48.8 1.081 / 62.6

Figure 3: Top-1 test accuracy comparison of the BC-Res2Net and
the BC-ResNet according to model parameters and MACs.

learning rate of 1e-5 was used. For the model structure, both F2

and F1 of the BC-Res2Net were sliced into four subchannels. Sub-
spectral normalization [19] with four sub-bands and ResNorm with
0.1 (hyperparameter of the identity shortcut path,) were applied to
the BC-Res2Net.

5. RESULT

We evaluated the result in terms of the top-1 test accuracy and
multiclass cross-entropy (log loss). We also reported the number
of model parameters and multiply-accumulate operations (MACs)
were used to observe computational complexity. Figure 3 shows
the comparison of the BC-ResNet and BC-Res2Net when the base
CNN channel size increases from 40 to 80. For all the CNN chan-
nel sizes, the BC-Res2Net achieves higher accuracy than the BC-
ResNet while having small MACs and model parameters. Table 2
presents the effects of the proposed structural modifications on the
ASC model. The BC-Res2Net-40 requires 2.6% fewer parameters
and 7.7% fewer MACs than the BC-ResNet-40 but performs bet-
ter in terms of log loss and accuracy. When MFA and FPM were
applied to the BC-Res2Net, the accuracy improved by 0.2% and
0.3%, respectively; when both were applied, the accuracy improved
by 1.7%. Table 3 shows the results for the short audio conditions.
We evaluated the cropped test data with the given duration within
each 10 s audio of the 2020 data. The BC-Res2Net performed better
than the BC-ResNet for all the test lengths; in particular, the model
that added MFA and FPM to the BC-Res2Net obtained better re-
sults at shorter durations of 1 s and 2 s. These results show that
the BC-Res2Net extracts the information required to classify the
scenes more effectively than the BC-ResNet, and using MFA and
FPM additionally assists in classifying sound in short-segmented
audio. Table 4 presents the effect of the fine-tuning method based on
the maximum drop rate. Compared with the pretrained model, the
overall accuracy and log loss improved by 0.084 and 1.3%, respec-
tively; when the fine-tuning was applied without data-random-drop,

and better performance was achieved when the drop was applied to
the selected Device A. Maximum drop rate of 0.9 exhibited the best
average log loss and accuracy, and achieved significant improve-
ments of 0.091 and 1.8%, respectively, compared to the case when
fine-tuning was not applied. In particular, on the seen device, the
performance of multiple devices including Device A was improved
evenly, and the performance improvement was observed even in the
unseen device, showing that the proposed fine-tuning method bene-
fits generalization of the device.

6. RELATIONSHIPS WITH TECHNICAL REPORT

In a technical report [27], quantization-aware training (QAT) [28]
was additionally introduced to satisfy the quantization conditions of
INT8. The log loss and accuracy of the QAT-applied BC-Res2Net-
40-based ASC model were degraded to be 1.193 and 60.3%, respec-
tively, compared with the results without quantization. We submit-
ted the outputs of the two systems with the proposed fine-tuning in
QAT environment. To investigate the effect of the proposed fine-
tuning according to the regularization scaling factor, we submitted
systems results trained with the fine-tuning method with a drop rate
of 0.9 and the regularization factors with 0.04 and 0.4. Each result
achieved log losses of 1.072 (Acc. 62.2%) and 1.065 (Acc. 62.6%),
respectively, for the test set of the development dataset. For the rest
of the two trials, we additionally applied knowledge distillation [29]
introduced in [7] to improve the performance. The best result was
assigned the teacher model size equal to the student model and the
scaling factor of regularization to 0.4 and achieved a log loss of
0.835 and accuracy of 70.1% from the development dataset. Fi-
nally, this result achieved a log loss of 1.147 and accuracy of 60.8%
in the challenge evaluation and placed second in the competition.

7. CONCLUSION

We proposed the BC-Res2Net by modifying the BC-ResNet in a
multiscale manner. Moreover, we improved ASC performance un-
der short audio evaluation conditions by using the MFA and the
FPM method, which finds important components among frequency
and channel components and effectively aggregates feature maps
of different resolutions. Finally, we suggested the device-aware
data-random-drop method-based fine-tuning method to promote op-
timization for multiple devices.
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