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ABSTRACT

Anomalous sound detection (ASD) is a technique to determine
whether the sound emitted from a target machine is anomalous or
not. Subjectively, timbral attributes, such as sharpness and rough-
ness, are crucial cues for human beings to distinguish anomalous
and normal sounds. However, the feature frequently used in existing
methods for ASD is the log-Mel-spectrogram, which is difficult to
capture temporal information. This paper proposes an ASD method
using temporal modulation features on the gammatone auditory fil-
terbank (TMGF) to provide temporal characteristics for machine-
learning-based methods. We evaluated the proposed method using
the area under the ROC curve (AUC) and the partial area under the
ROC curve (pAUC) with sounds recorded from seven kinds of ma-
chines. Compared with the baseline method of the DCASE2022
challenge, the proposed method provides a better ability for do-
main generalization, especially for machine sounds recorded from
the valve.

Index Terms— Anomalous sound detection, gammatone fil-
terbank, temporal modulation features, timbre information, deep
learning

1. INTRODUCTION

Anomalous sound detection (ASD) is a technique to determine
whether the sound recorded from a target machine is anomalous or
not. It enables workers to arrange maintenance work to fix machine
problems in the earliest stages, thus reducing maintenance costs
and preventing consequential damages. ASD for machine condi-
tion monitoring purposes has received increasing attention.

ASD is often viewed as an unsupervised problem due to diffi-
culties in collecting anomalous sounds that can cover all possible
types of anomalies. Autoencoder (AE)-based unsupervised meth-
ods, such as those in [1, 2, 3], were popularly used. These meth-
ods simulated the distribution of normal sounds by minimizing the
reconstruction error of normal training data. Then, the reconstruc-
tion scores from the testing data were used to detect the anomalies.
Some improved AE models, such as Heteroskedastic Variational AE
(HVAE) [4] and Conformer-based AE [5], have also been proposed
to improve the performance of ASD. However, the performance of
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AE-based ASD systems depends significantly on the discrimination
of input features.

The log-Mel-spectrogram (LMS) is widely used as input fea-
ture in ASD [1, 3, 6]. It is designed in accordance with the pitch
perception of the human ear and has high resolution in the low fre-
quency and low resolution in the high frequency [7]. However, the
discriminative information of sounds emitted from different kinds
of machines may be encoded non-uniformly in the frequency do-
main. The Mel filterbank may filter out important information con-
cealed in the high-frequency components and hence decrease the
performance of an ASD system. Furthermore, the LMS focuses on
discriminative information from the frequency domain, making it
difficult to capture temporal information.

Because of the drawbacks of the LMS, other ASD methods
considered temporal information to improve detection results. In
[8], a temporal feature is extracted from the raw waveform by a
CNN-based network (TgramNet) to compensate for the anomalous
information unavailable from the LMS. This complementary infor-
mation can further improve the results of ASD systems. However,
there is still a lot of redundant information with the raw waveform
as a front-end feature and cannot distinguish between normal and
anomalous sounds well.

For human beings, it is pretty easy to distinguish anomalous and
normal sounds by perceiving auditory attributes (loudness, pitch,
and timbre), especially timbral attributes, such as sharpness and
roughness [9]. A feature that includes more timbral information is
crucial for perceptually distinguish anomalous and normal sounds.
However, a specially designed feature from the perspective of hu-
man perception for ASD has not been developed.

This paper proposes a method to use temporal modulation fea-
tures on the gammatone auditory filterbank (TMGF) [10] combined
with a simple AE-based detector for the ASD task. This paper as-
sumes that the TMGF feature can provide much more information
related to human perception, especially timbral attibutes. The pro-
posed method is evaluated by experiments on the Task 2 dataset of
the DCASE2022 challenge [1]. The results show that the proposed
method outperforms the baseline system in the target evaluation.

2. BASELINE METHOD

The AE-based system was selected as a baseline [1]. In the base-
line system, the LMS of the input audio X = {Xt}Tt=1 was ex-
tracted and fed into an AE-based detector, where Xt ∈ RF , F
and T are the number of Mel-filters and time-frames, respectively.
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Figure 1: Proposed system using temporal modulation features on the gammatone auditory filterbank (TMGF, Sm,k(t)) for anomalous sound
detection (ASD).

Then, the acoustic feature at t is obtained by concatenating consecu-
tive frames of the log-Mel-spectrogram as δt = (Xt, ..., Xt+P−1),
where D = P × F , P is the number of frames of the context win-
dow. The anomaly score is calculated as

Aθ(X) =
1

DT

T∑
t=1

||δt − F(δt)||22, (1)

where F(·) is the vector reconstruct function using the AE model,
and || · ||2 is ℓ2 norm. As shown in Fig. 1, the AE model includes
an encoder, bottleneck layer, and decoder modules. All modules
consist of fully-connected layers. The training of the AE model is
a regression mission due to the fact that only normal sounds can be
used in model training. Finally, the mean squared error (MSE) is
used as the cost function to optimize the overall system.

To determine the anomaly detection threshold, the baseline
method assumes thatAθ follows a gamma distribution. The gamma
distribution parameters are estimated from the histogram ofAθ , and
the anomaly detection threshold is determined as the 90th percentile
of the gamma distribution. If Aθ for each test clip is greater than
this threshold, the clip is judged to be abnormal; otherwise, it is
judged to be normal.

3. PROPOSED TMGF FEATURES

The temporal modulation on an auditory filterbank contains im-
portant information related to the timbre of a sound, such as the
sharpness, roughness, and fluctuation strength [11, 12, 13]. Such
information visualizes how humans perceive a sound as well as how
we judge a sound (i.e., as ”anomalous” or ”normal”). Also, differ-
ent frequencies of temporal modulation contain different levels of
speech information such as speech intelligibility, speaker identity,
and emotion. Thus, we aim to utilize the temporal modulation fea-
ture for detecting anomalous sound. The extraction processes are
based on those from Huy. et al. [10].

The gammatone filter [14] is a well-known auditory filter
model. The impulse response of a gammatone analysis filter at the
center frequency fc is defined as

g(t) = atn−1e−2πbERB(fc)tej2πfct , (2)

where t ≥ 0 is time in seconds, a is the amplitude, n is the filter
order, and b is the bandwidth coefficient. The equivalent rectangular
bandwidth ERB(fc) is defined as

ERB(fc) = 24.7 + 0.108fc . (3)

UsingK gammatone filters {g(k)(t)}K−1
k=0 with different center

frequencies, from an input signal x(t), the output of the filterbank

Xk(t) can be expressed as the product of the amplitude modulation
Ak(t) and the complex carrier ejϕk(t), as

Xk(t) = x(t) ∗ g(k)(t)

= Ak(t)e
jϕk(t) .

(4)

The gammatone filterbank can be implemented using a wavelet
transform where the mother wavelet is ψ(t) = g(t) [15]. Then,
with an α > 1, the k-th filter g(k)(t) can be defined by scaling ψ(t)
with a factor αk of t, as

g(k)(t) = ψ (αkt) , (5)

αk = α
2k

K−1
−1 . (6)

To analyze different frequency components of Ak,t, we
use a modulation filterbank [16, 17] consisting of M filters
{h(m)(t)}Mm=1. The first filter h(1)(t) is a low-pass filter with a
cut-off frequency of f1. For each m ≥ 2, the filter h(m)(t) is
a band-pass filter of which the frequency ranges from 2m−2f1 to
2m−1f1. Using the designed modulation filterbank, the TMGF fea-
tures can be extracted from the amplitude modulation Ak,t as

Sm,k(t) = Ak(t) ∗ h(m)(t) . (7)

4. EXPERIMENTAL SETUP

4.1. Datasets

The datasets used in this task were provided by the DCASE2022 or-
ganizers [18, 19]. The data includes normal and anomalous sounds
recorded from seven machines: fan, gearbox, bearing, slide, tor car,
toy train, and valve. Each recorded sound includes the target ma-
chine’s sounds and environmental sounds. To simplify the task, only
the first channel of multi-channel audio is used. The length of each
recorded sound is fixed to 10 s, and the sampling rate is 16 kHz.

The data is divided into three datasets: development, additional
training, and evaluation. Each dataset includes audio from these
seven types of machines. Machines in the development dataset in-
clude sections 01, 02, and 03. Machines in the additional training
dataset and evaluation dataset include sections 04, 05, and 06. Each
section was divided into source and target domains due to the differ-
ences in operating speed, machine load, viscosity, heating tempera-
ture, type of environmental noise, signal-to-noise ratio (SNR), etc.
Different domains are split into a training and testing subset—the
training dataset includes normal sounds only, but the testing dataset
includes normal and abnormal sounds. In our experiments, training
data in the development dataset was used for model training, and
test data in the development dataset was used for testing.
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Table 1: Overall results of the proposed (TMGF) and baseline (BL) methods in terms of AUC and pAUC.

Machines Sections AUC (source) AUC (target) pAUC
BL (%) TMGF (%) BL (%) TMGF (%) BL (%) TMGF (%)

Toy car

0 85.54 62.62 45.06 40.78 51.89 47.79
1 87.22 67.66 42.02 39.76 53.53 48.42
2 99.04 71.62 26.44 42.66 54.32 55.53

Arithmetic mean 90.60 67.30 37.84 41.07 53.25 50.58
Harmonic mean 90.22 67.10 35.79 41.03 53.23 50.35

Toy train

0 66.78 44.26 32.94 25.84 51.63 48.74
1 77.56 61.82 30.58 45.92 50.37 49.37
2 83.42 45.86 15.92 49.76 49.47 51.05

Arithmetic mean 75.92 50.65 26.48 40.51 50.49 49.72
Harmonic mean 75.27 49.53 23.83 37.23 50.48 49.70

Bearing

0 50.24 62.86 62.88 63.46 51.53 52.84
1 66.12 66.44 63.96 62.42 52.79 49.53
2 42.14 55.70 54.74 62.64 48.47 66.05

Arithmetic mean 52.83 61.67 60.53 62.84 50.93 56.14
Harmonic mean 51.06 61.33 60.23 62.84 50.86 55.29

Fan

0 82.04 84.20 38.66 42.00 59.63 50.11
1 72.46 51.84 46.04 49.48 51.63 50.95
2 81.84 78.58 65.64 67.50 63.89 64.37

Arithmetic mean 78.78 71.54 50.11 52.99 58.39 55.14
Harmonic mean 78.52 68.35 47.75 50.99 57.93 54.43

Gearbox

0 64.34 36.02 65.00 49.60 61.26 49.60
1 65.84 59.22 57.40 54.86 53.63 50.58
2 74.64 67.96 66.04 66.22 62.11 58.05

Arithmetic mean 68.27 54.40 62.81 56.89 59.00 52.74
Harmonic mean 67.98 50.54 62.57 56.08 58.74 52.48

Slider

0 80.42 46.26 56.82 45.12 62.21 48.26
1 67.04 50.22 50.18 63.06 53.05 53.05
2 86.78 23.88 40.82 53.60 54.37 48.37

Arithmetic mean 78.08 40.12 49.27 53.93 56.54 49.89
Harmonic mean 77.17 35.97 48.37 52.93 56.27 49.80

Valve

0 54.66 98.66 51.96 98.30 52.26 94.37
1 50.58 59.80 52.06 60.94 49.95 54.16
2 50.88 95.86 43.40 97.08 48.79 89.11

Arithmetic mean 52.04 84.77 49.14 85.44 50.33 79.21
Harmonic mean 51.98 80.45 48.78 81.34 50.29 74.47

Average Arithmetic mean 70.93 61.49 48.03 56.24 54.13 56.20
Harmonic mean 67.57 55.53 42.53 51.56 53.76 54.26

4.2. Metrics

To evaluate the performance of an ASD system, the area under the
curve (AUC) and partial-AUC (pAUC) for receiver operating char-
acteristic (ROC) curves are used. The pAUC is an AUC calculated
from a portion of the ROC curve over a pre-specified range of inter-
est. To increase the reliability, the pAUC is calculated as the AUC
over a low false-positive-rate (FPR) range [0, p], where p = 0.1
is used. According to [20], the AUC and pAUC for each machine
type, section, and domain can be calculated as

AUCm,n,d =
1

N−
d N

+
n

N−
d∑

i=1

N+
n∑

l=1

H(Aθ(x
+
l )−Aθ(x

−
i )) , (8)

pAUCm,n =
1

⌊pN−
n ⌋N+

n

⌊pN−
n ⌋∑

i=1

N+
n∑

l=1

H(Aθ(x
+
l )−Aθ(x

−
i )) ,

(9)

where m represents the index of a machine type, n represents the
index of a section, d = {source, target} represents a domain, ⌊·⌋
is the flooring function, and H(x) returns 1 when x > 0 and 0
otherwise. {x−i }

N−
i=1 and {x+l }

N+

l=1 are normal and anomalous test
clips in domain d in section n in machine type m, respectively.
N− and N+ are the number of normal and anomalous test clips in
domain d in section n in machine type m, respectively.

4.3. Experimental conditions

To extract the LMS feature, 10-s audio clips were first split into
different frames with frame lengths of 64 ms and hop lengths
of 32 ms. Then, the Mel-spectrogram feature is extracted using
the melspectrogram module in the librosa library with the fol-
lowing parameters: n fft=1024, hop length=512, T = 128, and
power=2.0. Finally, five Mel-spectrogram features (P = 5) were
concatenated into one feature vector with a dimension of 640 and
fed into the detector.
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Figure 2: Comparison of the log-Mel-spectrogram (LMS) and
the proposed TMGF feature using normal (N) and anomalous (A)
sounds emitted from valve. Both sounds are selected from the tar-
get domain and have the same pattern. MF: modulation frequency,
freq.: frequency.

In the TMGF feature extraction, we used the gammatone filter-
bank with K = 65 and α = 10. For the mother wavelet ψ(t),
we set n = 4, b = 1.019, and fc = 600Hz. For the modulation
filterbank, we used M = 6 and f1 = 2Hz. To decrease the dimen-
sion of TMGF feature, downsampling was conducted to decrease
the temporal dimension to 1600 Hz. Finally, feature vectors with a
fixed dimension of 390 were fed into the detector.

The model had four dense layers with 128 dimensions for the
encoder, one bottleneck layer with eight dimensions, and four dense
layers with 128 dimensions for the decoder. We trained the model
for 100 epochs using the Adam optimizer [21] with a learning rate
of 0.0001 and a batch size of 128. The anomaly scores were calcu-
lated by the averaged reconstruction error.

5. RESULTS

The overall results are shown in Table 1. This paper compares
the results using our proposed method with that of the baseline
method. The improved results are highlighted in the table. From
these results, we can see that the LMS feature provides better per-
formance in the source evaluations, but the performance signifi-
cantly degrades in the target evaluation. The proposed method per-
forms better in the target evaluation; even degradation occurs in the
source evaluation. This is because of the TMGF feature can cap-
ture the sound variances in the time domain easily. It is sensitive
to some background noises and irrelevant information. Therefore,
the over-fitting problem in the training stage could be alleviated to
some extent by using the proposed TMGF feature, hence improving
the robustness of a trained ASD system.

The results of the TMGF feature achieve a much better perfor-
mance in both the source and target evaluation in the valve. This
is because timbral information captured by the TMGF feature, such
as the sharpness and roughness, is useful for a learning system to
find the variance of the ’click’ sounds emitted from a valve. By us-
ing the TMGF feature, we improved the average arithmetic mean
of AUC from 48.03% to 56.24% and the average harmonic mean of
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Figure 3: Results of DCASE 2022 challenge using sounds recorded
from the valve. Results from both the development (Dev.) dataset
and evaluation (Eva.) dataset are depicted. Blue and red circles
correspond to baseline and proposed systems, respectively.

AUC from 42.53% to 51.56% in the target evaluation.
Figure 2 shows the differences between the LMS feature and

the proposed TMGF using normal and anomalous sounds emitted
from the valve. The pattern of these two sounds was consistent.
TMGF can capture not only the frequency feature as ’click’ sounds
but also the time domain feature as timbre-related property.

The results of the DCASE2022 challenge using sounds
recorded from the valve are shown in Fig. 3. Each dot corresponds
to a different system in the challenge. As we can see, the TMGF can
obtain competitive results in the valve even if a simple AE-based de-
tector is used. The AE-based detector has to assume that the learned
model cannot reconstruct sounds that are not used in training, that
is, unknown anomalous sounds. This assumption is hard to satisfy
because the training procedure does not involve anomalous sounds
[8, 22]. Therefore, we believe that the performance can be further
improved if a more reasonable detector can be used for the TMGF
feature.

6. CONCLUSION

This paper presented a method that combines the temporal mod-
ulation features on the gammatone auditory filterbank (TMGF)
with an AE-based detector in the ASD challenges. With the pro-
posed method, this paper aims to make up for the deficiency of
the log-Mel-spectrogram (LMS) feature and provide the TMGF
feature, including more timbral information related to timbral at-
tributes such as sharpness and roughness. Experimental results
in the DCASE2022 Challenge Task 2 showed that the proposed
method could provide a better ability for domain generalization.
For machine sounds recorded from the valve, results from both the
source and target evaluation have significant improvements com-
pared with the baseline method. Future work will focus on inves-
tigating the model architecture of the ASD system to extract more
discriminative information from the proposed TMGF feature.
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