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ABSTRACT
Everyday sounds cover a considerable range of sound categories
in our daily life, yet for certain sound categories it is hard to col-
lect sufficient data. Although existing works have applied few-shot
learning paradigms to sound recognition successfully, most of them
have not exploited the relationship between labels in audio tax-
onomies. This work adopts a hierarchical prototypical network to
leverage the knowledge rooted in audio taxonomies. Specifically, a
VGG-like convolutional neural network is used to extract acoustic
features. Prototypical nodes are then calculated in each level of the
tree structure. A multi-level loss is obtained by multiplying a weight
decay with multiple losses. Experimental results demonstrate our
hierarchical prototypical networks not only outperform prototypi-
cal networks with no hierarchy information but yield a better re-
sult than other state-of-the-art algorithms. Our code is available in:
https://github.com/JinhuaLiang/HPNs_tagging

Index Terms— Everyday sound recognition, few shot learning,
hierarchical prototypical network

1. INTRODUCTION

Everyday sound recognition (or audio tagging) is to classify the
types of environmental sound events in a recording or online stream,
which involves many potential scenarios such as hearing aids [1],
smart cities [2], and advanced healthcare [3]. In the past decades, a
great amount of deep learning methods have emerged [4, 5] explor-
ing how to boost audio networks’ performance using large-scale
datasets [6, 7]. While many works turned to focus on some more
practical scenarios, such as mismatched domains [8], weakly su-
pervised learning [9], and noisy labels [10], most of these methods
are still restricted by the size of available datasets. This is a practi-
cal problem in the field of everyday sound recognition as it usually
takes annotators more effort to mark the categories in a recording.
In addition, everyday sounds cover thousands of categories, which
makes it impossible to collect sufficient instances per class for su-
pervised learning. This is thus how few-shot learning comes into
the picture.

Inspired by the human ability to learn novel items with just a
few examples, few-shot learning aims to capture the pattern of an
unseen category using a handful of instances [11]. A typical few-
shot learning framework is depicted as an N -way K-shot prob-
lem where there are N classes in a task and each class contains
K instances for training. Currently only a few studies have at-
tempted to apply few-shot learning to environmental sound recog-
nition tasks. Although these works pioneered few-shot audio recog-
nition, most of them were restricted to implementing off-the-shelf
few-shot learning methods from other fields explicitly, which ig-
nores exploiting the relationship between labels in audio taxonomy.

This work is motivated by the fact that we humans learn un-
seen concepts not only by observing their own features, but also
by connecting them to existing knowledge. We thus assume that
leveraging a priori knowledge helps a model to learn an unseen cat-
egory with a few examples. Based on this assumption, this paper ap-
plies hierarchical prototypical networks (HPNs) to leverage the au-
dio taxonomy knowledge drawn from the taxonomy of the dataset.
Specifically, a few-shot classification problem is considered as a
multi-task classification problem where both ancestor classes and
descendant classes are used in separate classification tasks. Further-
more, prototypical networks are adopted as classifiers by measur-
ing distance between query points and prototypes in the embedding
space. Experimental results on the ESC-50 dataset [12] show that
our HPNs yield a superior performance over prototypical networks
with no hierarchy knowledge and outperform other state-of-the-art
models.

The contributions of our work are three-fold:
i) Several state-of-the-art few-shot learning algorithms are bench-

marked for generic everyday sound recognition. Different ex-
perimental setups are carried out to investigate the impact of
data splits on model evaluation.

ii) A hierarchical prototypical network is proposed and applied to
leverage a priori knowledge of sound event taxonomy by taking
samples’ ancestor classes into consideration.

iii) The impact of data splits on overall performance is investigated.
The code is also released to benchmark state-of-the-art few-shot
algorithms and to set up an evaluation environment on the ESC-
50 dataset.
The remainder of this paper is organised as follows. Section

2 briefly summarises work related to our research and Section 3
introduces our proposed hierarchical prototypical network and the
implementation details. In the Section 4, experimental results are
discussed to demonstrate the superior performance of our network
compared with other few-shot methods. Discrepancy in perfor-
mance is then discussed among different data splits. Section 5 con-
cludes the work and points out directions for future work.

2. RELATED WORK

2.1. Few-shot learning for everyday sound recognition

Few shot learning aims to use a limited amount of labeled examples
to train a model that can be generalised to unseen categories eas-
ily. Suppose Cbase and Cnovel are two non-overlapping label sets
(or splits) drawn from the whole label set C. The task is to train a
classifier f with labelled samples of classes from Cbase and to eval-
uate f on samples of classes belonging to Cnovel. Transfer learning
[13] and meta learning [14, 15] are two of the most frequently used
techniques. On the one hand, transfer learning strategies train f
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with abundant data from Cbase and then fine-tune f through some
iterations using a limited amount of data from Cnovel. On the other
hand, meta learning (or episodic learning) strategies [16, 15, 14]
update model parameters through a series of independent tasks in
the training process. A task herein is formed by drawing N classes
from Cbase each of which contains K “training” data and Q “test”
data. To differentiate the above “training” and “test” data with the
conventional terms, we refer to them as support and query data in-
stead. The model is then trained to predict the categories of query
data out of N classes by offering support data. The underlying as-
sumption of episodic learning is aligning the training process with
the evaluation benefits a model’s ability to generalise to novel cat-
egories. However, there exist some works [13] stating that transfer
learning can have a competitive performance as well. Therefore,
it still remains an open problem to work out the best practice for
few-shot learning.

One of the biggest challenges for everyday sound recognition
nowadays is that it covers thousands of sound classes, while only
hundreds of them are available in the existing large-scale datasets
[6]. There are some attempts regarding how to apply few-shot learn-
ing in the everyday sound domain. Shi et al. [17] implemented
several few-shot learning algorithms on a subset of the AudioSet
dataset and demonstrated the advantage of meta-learning methods
in the audio domain. Wang et al. [18] curated a synthesized au-
dio dataset for few-shot audio recognition based on FSD50K [7]
and compared the state-of-the-art by controlling annotated sam-
ples, polyphony levels, and signal-to-noise ratio (SNR). Heggan et
al. [19] attempted to setup a benchmark for few-shot learning tech-
niques in audio domains. In addition to generic everyday sound
recognition, the Detection and Classification of Acoustic Scenes
and Events (DCASE) challenge 1 has been holding a task on fine-
grained few-shot learning in the past two years which attracts in-
creasing amount of attention. Although the previous works intro-
duced few-shot learning paradigms to everyday sounds success-
fully, most of them ignored leveraging the relationship between la-
bels in the audio taxonomy. Different from those works, this paper
integrates audio taxonomy knowledge within existing few-shot al-
gorithms.

2.2. Knowledge-based few-shot learning

Knowledge-based learning incorporates label taxonomy knowledge
into the supervised learning [20]. There are some knowledge-based
few-shot methods in few-shot scenarios [21, 22]. Peng et al. pro-
posed a Knowledge Transfer Network (KTN) to incorporate visual
features and semantic information for image recognition [21]. They
used two independent classifiers to capture visual patterns and to
conduct knowledge inference, followed by an integration network
to merge them together. Due to the difference between sound and
image, however, the definition of sound classes is more abstract
and obscure for annotators compared with images. Garcia et al.
designed hierarchical prototypical networks for music instrument
recognition [22]. They aggregated classes according to a predefined
instrument hierarchy and calculated the hierarchical loss by adding
a weight decay to each level in the tree structure. Compared with
music instrument classification, everyday sound recognition cannot
be sorted into a tree structure by their physical properties merely.
Some intermediate classes, such as “domestic sound” and “wild an-
imal”, are connected with psycho-acoustics directly, which makes
the classification task even more complicated. Inspired by [22],

1https://dcase.community/

this paper applies hierarchical prototypical networks to leverage the
audio taxonomy knowledge derived from the dataset. Compared
with their original implementation, our proposed models lower the
limit on the number of prototypes for ancient prototypes generation,
which encourages the model to use the audio taxonomy knowledge
in more circumstances.

3. HIERARCHICAL PROTOTYPICAL NETWORKS

3.1. Prototypical networks

Prototypical networks were proposed in [16] to train a few-shot
model using a series of independent tasks. Prototypical net-
works learn an embedding space where classification is performed
by computing distances between each query sample and proto-
types. Suppose a support set of N × K examples be S =
{(x1, y2), ..., (xN×K , yN×K)} where each xi ∈ RD is the D-
dimensional feature vector of an example obtained from an encoder
f and yi ∈ {1, ...,K} be the corresponding label. A prototype
could be calculated by averaging the embeddings of support sam-
ples belonging to its class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fϕ(xi) (1)

where Sk denotes the set of examples whose ground truth is class k
and ϕ are the learnable parameters in the encoder f .

Prototypical networks then produce a distribution over classes
for a query embedding x using a softmax function over distances to
the prototypes:

qϕ(y = k|x) = exp(−dist(fϕ(x), ck))∑
m exp(−dist(fϕ(x), cm))

(2)

We applied the Euclidean distance as the distance function in our
experiments. The probability distribution over classes is used to
calculate cross-entropy loss.

LCE = −
∑

p(x) log q(x) (3)

where p, q are distributions of ground truth and predictions.

3.2. Hierarchical prototypical networks

Based on prototypical networks in Section 3.1, we devise hierarchi-
cal prototypical networks (HPNs) to incorporate the audio taxon-
omy knowledge into the training process. As shown in Figure 1,
each level of the tree structure is treated as an independent multi-
class classification task in the training stage. We thus build a HPN
to extract the acoustic features with a shared encoder f and pre-
dict multiple labels corresponding to each level. Similar to (1), the
acoustic features of support samples are used to calculate prototypes
of the bottom level as:

c
(0)
k =

1

|Sk|
∑

(xi,yi)∈Sk

fϕ(xi) (4)

To generate prototypical nodes of a higher level in the HPN, pro-
totypes of the lower level are clustered together as per their parent
level and aggregated to obtain the prototypes of a higher level:

c
(h)
j =

1

|C(h)
k |

∑
c
(h)
j ∈C

(h)
j

c
(h−1)
j (5)
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Figure 1: Illustration of training a hierarchical prototypical network
in a multi-task scenario. The model learns to solve a 4-way 5-shot
problem on the bottom level while trying to conduct a 2-way clas-
sification on a higher level.

Table 1: The architecture of the designed encoder.
Block name Filter size Output shape
Conv block 1 3× 3@64 (64, 32, 215)
Conv block 2 3× 3@128 (128, 16, 107)
Conv block 3 3× 3@256 (256, 8, 53)
Conv block 4 3× 3@512 (512, )
Fully connected layer 256 (256,)

where C(h)
j is a set of prototypes belonging to the class j at the h-th

level in the taxonomy. The HPN iterates the clustering and aggrega-
tion process until the prototypes of the highest level are calculated.

Different from the original hierarchical network [22] which ig-
nores an ancestor node if the number of its child nodes is less than
two, HPN takes this ancestor class into consideration to fully exploit
the hierarchical information. We believe this can leverage the audio
taxonomy knowledge even better. The Euclidean distance between
the query embedding and prototypes in each level is then calculated
and used for classification. The evaluation process is similar to the
training except only the classification task of the bottom level in
HPNs will be taken into consideration for a fair comparison.

Following the architecture of VGGNet [23], we design a con-
volutional neural network containing 8 convolutional layers as the
backbone of our HPNs, as shown in Table 1. Each block consists
of two identical convolutional filters. Except for the last block, a
max pooling layer with strides equal to 2 is appended to the block.
A global pooling operation is used in the last block. Finally, the
network outputs audio embedding sized 256.

3.3. Structural loss

Let h be the hierarchical level of a node in the tree structure, we can
calculate the hierarchical loss [22] by using the cross-entropy loss
function as follows:

Lhierarchical =

H∑
h=0

eαhL
(h)
CE (6)

where L
(h)
CE is the cross-entropy loss in the level h, H is the height

of the taxonomy, and α is a hyper-parameter to control the loss de-

cay of each level with respect to their height in the hierarchy. We
set α equal to 1 in all experiments.

4. EVALUATION

4.1. Dataset

Table 2: Parent classes and examples of the child classes in ESC-50
Parent class Examples of child classes
Animals Dogs, Rooster, Pig, Cow, ...
Natural & water soundscapes Rain, Sea waves, Crickets, ...
Human, non-speech sounds Crying baby, Sneezing, ...
Interior/domestic sounds Door knock, Clock tick , ...
Exterior/urban noises Engine, Chainsaw, Siren, ...

The few-shot learning methods are evaluated on the ESC-50
dataset [12]. ESC-502 is a collection of sound events which con-
sists of 2000 5-second recordings in total. Theses recordings are
assigned one label out of 50 child classes. Table 2 shows the tree
structure of ESC-50. It can be observed that these child classes
are loosely arranged into 5 parent categories: “Animals”, “Natu-
ral & water soundscapes”, “Human, non-speech sounds”, “Human,
non-speech sounds”, “Interior/domestic sounds”, “Exterior/urban
noises”. It should be noted that neither the original nor our ex-
perimental setting uses the parent classes in the evaluation stage.

4.2. Comparative methods

In addition to prototypical networks, we also use a selection of
few-shot algorithms for comparison [13, 14]. The transfer learning
method in [13] trains an encoder from scratch using the base split. It
then applies this trained model with the best validation performance
for few-shot evaluation using the novel split. Another work in [14]
used matching networks to calculate an attention matrix between
query samples and support samples. The attention matrix is mul-
tiplied by matrix of support labels to obtain the logits of the query
ones.

Except matching networks, we apply the identical encoder as
described in Table 1. For the matching network we build a model
following the implementation in [14]. As all of the comparative
methods are metric-based, we apply the Euclidean distance to assess
the similarity between two samples.

4.3. Evaluation metrics

As with Sect.6.5 in [24], this work uses accuracy to measure the
ability of a classifier to make the correct decisions. The F1 score is
calculated to trade off between the ability to make correct decisions
and to retrieve positive samples.

4.4. Experiment setup

Inputs for the few-shot methods are log Mel spectrograms. We set
the sampling rate to 44100 Hz. The window length is 1024 sample
points (roughly 20ms) with 50% overlap, and the number of Mel
bank filters is 64. We finally get spectrograms sized 431× 64. Be-
fore forwarding the extracted feature into network, frequency nor-
malisation is applied along each Mel bin.

2Dataset available in https://github.com/karolpiczak/ESC-50
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Following [22], in addition to a typical 5-way 5-shot problem,
all few-shot learning methods were evaluated in a 12-way classifica-
tion as well. For both experiments, each task (or episode) contains
5 support samples and 5 query samples. i.e. K = 5 and Q = 5.
There are 32 episodes for each epoch. For a fair comparison, all
models are trained through 100 epochs using the Adam optimiser
with learning rate equal to 0.0001. 5-fold cross-validation was used
throughout experiments. We randomly split the label set into two
non-overlapping datasets, train and evaluation sets, as per the ratio
7:3. Following [22] we ensure ratios of children classes under same
parent classes are identical between the train and evaluation pro-
cess. We refer to this data split method as uniform split hereafter. It
should be noted that the split label sets are changed with respect to
different folds in the cross-validation, but all methods in the same
folds share the same sets of train and evaluation.

4.5. Experimental results

Table 3: The performance of 12-way 5-shot learning methods on
the ESC-50 dataset. The best one is highlighted in bold.

Accuracy F1

Transfer Learning [13] 72.90% 72.87%
Proto [16] 77.70% 77.52%
Matching [14] 71.81% 71.75%
HPN (ours) 78.65% 78.51%

Table 4: The performance of three episodic learning methods for 5-
way 5-shot problems on the ESC-50 dataset. The best one is high-
lighted in bold.

Accuracy F1

Proto [16] 88.18% 88.18%
Matching [14] 86.83% 86.83%
HPN (ours) 88.90% 88.88%

Table 3 compares four few-shot learning methods in terms
of accuracy and F1-score. Our hierarchical prototypical network
yields the best performance among the transfer learning method,
prototypical network (Proto), and matching network. The hierar-
chical prototypical network outperforms the best baseline (i.e. the
prototypical network) by 0.95% and 0.99% in terms of accuracy and
F1-score, respectively. This indicates that audio taxonomy knowl-
edge can help an encoder to learn a better embedding space. Ta-
ble 4 compares three episodic learning methods for 5-way 5-shot
problems. Our HPNs can still yield a superior performance than
prototypical networks and matching networks.

4.6. Impact of data split

In order to investigate the impact of data splits on overall perfor-
mance, we compare different data split methods using the same few-
shot model. Table 5 shows results of baseline prototypical networks
with three data split methods. The random split method herein is to
select 15 classes as novel classes randomly, so that the ratios of chil-
dren classes under the same parent ones are not fixed. The parent
split method is to select all child classes under the same parent cate-
gory and fill this selected class set with the classes belonging to the

Table 5: The performance of prototypical networks with different
data splits on the ESC-50 dataset.

acc F1

Random 74.59% 74.59%
Parent 73.35% 73.35%
Uniform 77.70% 77.52%

rest parent categories. In this way, we make the number of classes
in the selected set obtained by parent split method identical to the
one by other methods. The descending order of the performance
of three data split methods is “Uniform” > “Random” > “Parent”.
This observation adheres to our intuition that the performance on
evaluation drops as the gap between the distribution of a base split
and a novel split gets bigger. It also demonstrates that the character-
istics between child classes from the same ancestor class are more
similar than those from different classes, suggesting the importance
of audio taxonomy knowledge in classification tasks.

5. CONCLUSION AND FUTURE WORK

This work designs a hierarchical prototypical network for every-
day sound recognition. The network extracts acoustic features and
generates prototypical nodes corresponding to multiple levels in the
tree structure. Distances between query samples and prototypical
nodes in each level are then calculated and used for classification
separately. Compared with prototypical networks with no hierarchy
information, our model achieved a better performance in terms of
accuracy and F1-score.

Although hierarchical prototypical networks proves that it is
promising to incorporate the audio taxonomy knowledge in few-
shot everyday sound recognition, it still suffers from some limita-
tions. First, HPNs cannot be applied to some datasets where an
explicit taxonomy is not available. Second, some taxonomies are
too complex to assign a hierarchical level to each label (e.g., a label
having multiple paths to the root). In the future we plan to extend
HPNs to a more complicated large-scale dataset. In addition, it is
also intriguing to explore knowledge-based methods without an ex-
plicit taxonomy.

6. ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical Sci-
ences Research Council [grant number EP/T518086/1]. The re-
search utilised Queen Mary’s Apocrita HPC facility, supported by
QMUL Research-IT, http://doi.org/10.5281/zenodo.438045.

7. REFERENCES

[1] X. Fan, T. Sun, W. Chen, and Q. Fan, “Deep neural
network based environment sound classification and its
implementation on hearing aid app,” Measurement, vol. 159,
p. 107790, July 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0263224120303286

[2] T. Spadini, D. L. d. O. Silva, and R. Suyama, “Sound
Event Recognition in a Smart City Surveillance Context,”
arXiv:1910.12369 [cs, eess, stat], Feb. 2020, arXiv:



Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

1910.12369. [Online]. Available: http://arxiv.org/abs/1910.
12369

[3] B. W. Schuller, D. M. Schuller, K. Qian, J. Liu, H. Zheng,
and X. Li, “COVID-19 and Computer Audition: An Overview
on What Speech & SoundAnalysis Could Contribute in
theSARS-CoV-2 Corona Crisis,” Frontiers in digital health,
vol. 3, p. 14, 2021, publisher: Frontiers.

[4] Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio Spectro-
gram Transformer,” in Proc. Interspeech 2021, 2021, pp. 571–
575.

[5] T. Zhang, J. Liang, and B. Ding, “Acoustic scene classification
using deep CNN with fine-resolution feature,” Expert Systems
with Applications, vol. 143, p. 113067, Apr. 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0957417419307845

[6] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
Set: An ontology and human-labeled dataset for audio
events,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). New Orleans,
LA: IEEE, Mar. 2017, pp. 776–780. [Online]. Available:
http://ieeexplore.ieee.org/document/7952261/

[7] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra,
“FSD50K: An Open Dataset of Human-Labeled Sound
Events,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 30, pp. 829–852, 2022, conference
Name: IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing.

[8] B. Kim, S. Yang, J. Kim, and S. Chang, “QTI Submis-
sion to DCASE 2021: Residual Normalization for Device-
Imbalanced Acoustic Scene Classification with Efficient De-
sign,” DCASE2021 Challenge, Tech. Rep., June 2021.

[9] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-
Scale Weakly Supervised Audio Classification Using Gated
Convolutional Neural Network,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). Calgary, AB: IEEE, Apr. 2018, pp. 121–125.
[Online]. Available: https://ieeexplore.ieee.org/document/
8461975/

[10] T. Iqbal, Y. Cao, A. Bailey, M. D. Plumbley, and W. Wang,
“ARCA23K: An Audio Dataset for Investigating Open-Set
Label Noise,” in Proceedings of the 6th Detection and Clas-
sification of Acoustic Scenes and Events 2021 Workshop
(DCASE2021), Barcelona, Spain, Nov. 2021, pp. 201–205.

[11] X. Li, Z. Sun, J.-H. Xue, and Z. Ma, “A concise
review of recent few-shot meta-learning methods,” Neuro-
computing, vol. 456, pp. 463–468, Oct. 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0925231220316222

[12] K. J. Piczak, “ESC: Dataset for Environmental Sound
Classification,” in Proceedings of the 23rd ACM international
conference on Multimedia. Brisbane Australia: ACM,
Oct. 2015, pp. 1015–1018. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2733373.2806390

[13] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola,
“Rethinking Few-Shot Image Classification: A Good Embed-
ding is All You Need?” in Computer Vision – ECCV 2020, ser.

Lecture Notes in Computer Science, A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, Eds. Cham: Springer International
Publishing, 2020, pp. 266–282.

[14] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu,
and D. Wierstra, “Matching Networks for One Shot
Learning,” in Advances in Neural Information Processing
Systems, vol. 29. Curran Associates, Inc., 2016. [Online].
Available: https://proceedings.neurips.cc/paper/2016/hash/
90e1357833654983612fb05e3ec9148c-Abstract.html

[15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-
learning for fast adaptation of deep networks,” in International
Conference on Machine Learning. PMLR, 2017, pp. 1126–
1135.

[16] J. Snell, K. Swersky, and R. Zemel, “Prototypical Networks
for Few-shot Learning,” Advances in Neural Information Pro-
cessing Systems, vol. 30, pp. 4077–4087, 2017.

[17] B. Shi, M. Sun, K. C. Puvvada, C.-C. Kao, S. Matsoukas,
and C. Wang, “Few-Shot Acoustic Event Detection Via Meta
Learning,” in ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 76–80, iSSN: 2379-190X.

[18] Y. Wang, N. J. Bryan, J. Salamon, M. Cartwright, and J. P.
Bello, “Who Calls The Shots? Rethinking Few-Shot Learning
for Audio,” in 2021 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA). IEEE, 2021,
pp. 36–40.

[19] C. Heggan, S. Budgett, T. Hospedales, and M. Yaghoobi,
“MetaAudio: A Few-Shot Audio Classification Benchmark,”
arXiv:2204.02121 [cs, eess], Apr. 2022, arXiv: 2204.02121.
[Online]. Available: http://arxiv.org/abs/2204.02121

[20] H. Phan, L. Hertel, M. Maass, P. Koch, R. Mazur, and
A. Mertins, “Improved Audio Scene Classification Based
on Label-Tree Embeddings and Convolutional Neural Net-
works,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 25, no. 6, pp. 1278–1290, June
2017, conference Name: IEEE/ACM Transactions on Audio,
Speech, and Language Processing.

[21] Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and
J. Tang, “Few-Shot Image Recognition With Knowledge
Transfer,” 2019, pp. 441–449. [Online]. Available:
https://openaccess.thecvf.com/content ICCV 2019/html/
Peng Few-Shot Image Recognition With Knowledge
Transfer ICCV 2019 paper.html

[22] H. F. Garcia, A. Aguilar, E. Manilow, and B. Pardo, “Leverag-
ing Hierarchical Structures for Few-Shot Musical Instrument
Recognition,” in Proceedings of the 22nd International Soci-
ety for Music Information Retrieval Conference, ISMIR 2021,
Online, November 7-12, 2021, J. H. Lee 0001, A. Lerch 0001,
Z. Duan, J. Nam, P. Rao, P. v. Kranenburg, and A. Srini-
vasamurthy, Eds., 2021, pp. 220–228. [Online]. Available:
https://archives.ismir.net/ismir2021/paper/000027.pdf

[23] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in Interna-
tional Conference on Learning Representations, 2015.

[24] T. Virtanen, M. D. Plumbley, and D. Ellis, Eds., Com-
putational Analysis of Sound Scenes and Events. Cham:
Springer International Publishing, 2018. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-63450-0


